Lie groups and Lie algebras |
---|
In the mathematical field of Lie theory, there are two definitions of a compact Lie algebra. Extrinsically and topologically, a compact Lie algebra is the Lie algebra of a compact Lie group; [1] this definition includes tori. Intrinsically and algebraically, a compact Lie algebra is a real Lie algebra whose Killing form is negative definite; this definition is more restrictive and excludes tori. [2] A compact Lie algebra can be seen as the smallest real form of a corresponding complex Lie algebra, namely the complexification.
Formally, one may define a compact Lie algebra either as the Lie algebra of a compact Lie group, or as a real Lie algebra whose Killing form is negative definite. These definitions do not quite agree: [2]
In general, the Lie algebra of a compact Lie group decomposes as the Lie algebra direct sum of a commutative summand (for which the corresponding subgroup is a torus) and a summand on which the Killing form is negative definite.
It is important to note that the converse of the first result above is false: Even if the Killing form of a Lie algebra is negative semidefinite, this does not mean that the Lie algebra is the Lie algebra of some compact group. For example, the Killing form on the Lie algebra of the Heisenberg group is identically zero, hence negative semidefinite, but this Lie algebra is not the Lie algebra of any compact group.
The compact Lie algebras are classified and named according to the compact real forms of the complex semisimple Lie algebras. These are:
The classification is non-redundant if one takes for for for and for If one instead takes or one obtains certain exceptional isomorphisms.
For is the trivial diagram, corresponding to the trivial group
For the isomorphism corresponds to the isomorphisms of diagrams and the corresponding isomorphisms of Lie groups (the 3-sphere or unit quaternions).
For the isomorphism corresponds to the isomorphisms of diagrams and the corresponding isomorphism of Lie groups
For the isomorphism corresponds to the isomorphisms of diagrams and the corresponding isomorphism of Lie groups
If one considers and as diagrams, these are isomorphic to and respectively, with corresponding isomorphisms of Lie algebras.
In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, .
In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.
In the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled. Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram correspond to important features of the associated Lie algebra.
In mathematics, a simple Lie group is a connected non-abelian Lie group G which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symmetric spaces.
In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups.
In mathematics the spin group, denoted Spin(n), is a Lie group whose underlying manifold is the double cover of the special orthogonal group SO(n) = SO(n, R), such that there exists a short exact sequence of Lie groups (when n ≠ 2)
In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.
In group theory, restriction forms a representation of a subgroup using a known representation of the whole group. Restriction is a fundamental construction in representation theory of groups. Often the restricted representation is simpler to understand. Rules for decomposing the restriction of an irreducible representation into irreducible representations of the subgroup are called branching rules, and have important applications in physics. For example, in case of explicit symmetry breaking, the symmetry group of the problem is reduced from the whole group to one of its subgroups. In quantum mechanics, this reduction in symmetry appears as a splitting of degenerate energy levels into multiplets, as in the Stark or Zeeman effect.
In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria show that Killing form has a close relationship to the semisimplicity of the Lie algebras.
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.
In mathematics, the Iwasawa decomposition of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix. It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method.
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.
In mathematics, a symmetric space is a Riemannian manifold whose group of isometries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis.
In projective geometry and linear algebra, the projective orthogonal group PO is the induced action of the orthogonal group of a quadratic space V = (V,Q) on the associated projective space P(V). Explicitly, the projective orthogonal group is the quotient group
In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra g0 is called a real form of a complex Lie algebra g if g is the complexification of g0:
In the mathematical field of Lie theory, a split Lie algebra is a pair where is a Lie algebra and is a splitting Cartan subalgebra, where "splitting" means that for all , is triangularizable. If a Lie algebra admits a splitting, it is called a splittable Lie algebra. Note that for reductive Lie algebras, the Cartan subalgebra is required to contain the center.
In mathematics, Borel–de Siebenthal theory describes the closed connected subgroups of a compact Lie group that have maximal rank, i.e. contain a maximal torus. It is named after the Swiss mathematicians Armand Borel and Jean de Siebenthal who developed the theory in 1949. Each such subgroup is the identity component of the centralizer of its center. They can be described recursively in terms of the associated root system of the group. The subgroups for which the corresponding homogeneous space has an invariant complex structure correspond to parabolic subgroups in the complexification of the compact Lie group, a reductive algebraic group.
In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.
This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.
In abstract algebra, an automorphism of a Lie algebra is an isomorphism from to itself, that is, a bijective linear map preserving the Lie bracket. The set of automorphisms of are denoted , the automorphism group of .