Lie algebra representation

Last updated

In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices (or endomorphisms of a vector space) in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.

Contents

The notion is closely related to that of a representation of a Lie group. Roughly speaking, the representations of Lie algebras are the differentiated form of representations of Lie groups, while the representations of the universal cover of a Lie group are the integrated form of the representations of its Lie algebra.

In the study of representations of a Lie algebra, a particular ring, called the universal enveloping algebra, associated with the Lie algebra plays an important role. The universality of this ring says that the category of representations of a Lie algebra is the same as the category of modules over its enveloping algebra.

Formal definition

Let be a Lie algebra and let be a vector space. We let denote the space of endomorphisms of , that is, the space of all linear maps of to itself. We make into a Lie algebra with bracket given by the commutator: for all ρ,σ in . Then a representation of on is a Lie algebra homomorphism

.

Explicitly, this means that should be a linear map and it should satisfy

for all X, Y in . The vector space V, together with the representation ρ, is called a -module. (Many authors abuse terminology and refer to V itself as the representation).

The representation is said to be faithful if it is injective.

One can equivalently define a -module as a vector space V together with a bilinear map such that

for all X,Y in and v in V. This is related to the previous definition by setting Xv = ρ(X)(v).

Examples

Adjoint representations

The most basic example of a Lie algebra representation is the adjoint representation of a Lie algebra on itself:

Indeed, by virtue of the Jacobi identity, is a Lie algebra homomorphism.

Infinitesimal Lie group representations

A Lie algebra representation also arises in nature. If : GH is a homomorphism of (real or complex) Lie groups, and and are the Lie algebras of G and H respectively, then the differential on tangent spaces at the identities is a Lie algebra homomorphism. In particular, for a finite-dimensional vector space V, a representation of Lie groups

determines a Lie algebra homomorphism

from to the Lie algebra of the general linear group GL(V), i.e. the endomorphism algebra of V.

For example, let . Then the differential of at the identity is an element of . Denoting it by one obtains a representation of G on the vector space . This is the adjoint representation of G. Applying the preceding, one gets the Lie algebra representation . It can be shown that , the adjoint representation of .

A partial converse to this statement says that every representation of a finite-dimensional (real or complex) Lie algebra lifts to a unique representation of the associated simply connected Lie group, so that representations of simply-connected Lie groups are in one-to-one correspondence with representations of their Lie algebras. [1]

In quantum physics

In quantum theory, one considers "observables" that are self-adjoint operators on a Hilbert space. The commutation relations among these operators are then an important tool. The angular momentum operators, for example, satisfy the commutation relations

.

Thus, the span of these three operators forms a Lie algebra, which is isomorphic to the Lie algebra so(3) of the rotation group SO(3). [2] Then if is any subspace of the quantum Hilbert space that is invariant under the angular momentum operators, will constitute a representation of the Lie algebra so(3). An understanding of the representation theory of so(3) is of great help in, for example, analyzing Hamiltonians with rotational symmetry, such as the hydrogen atom. Many other interesting Lie algebras (and their representations) arise in other parts of quantum physics. Indeed, the history of representation theory is characterized by rich interactions between mathematics and physics.

Basic concepts

Invariant subspaces and irreducibility

Given a representation of a Lie algebra , we say that a subspace of is invariant if for all and . A nonzero representation is said to be irreducible if the only invariant subspaces are itself and the zero space . The term simple module is also used for an irreducible representation.

Homomorphisms

Let be a Lie algebra. Let V, W be -modules. Then a linear map is a homomorphism of -modules if it is -equivariant; i.e., for any . If f is bijective, are said to be equivalent. Such maps are also referred to as intertwining maps or morphisms.

Similarly, many other constructions from module theory in abstract algebra carry over to this setting: submodule, quotient, subquotient, direct sum, Jordan-Hölder series, etc.

Schur's lemma

A simple but useful tool in studying irreducible representations is Schur's lemma. It has two parts: [3]

Complete reducibility

Let V be a representation of a Lie algebra . Then V is said to be completely reducible (or semisimple) if it is isomorphic to a direct sum of irreducible representations (cf. semisimple module). If V is finite-dimensional, then V is completely reducible if and only if every invariant subspace of V has an invariant complement. (That is, if W is an invariant subspace, then there is another invariant subspace P such that V is the direct sum of W and P.)

If is a finite-dimensional semisimple Lie algebra over a field of characteristic zero and V is finite-dimensional, then V is semisimple; this is Weyl's complete reducibility theorem. [4] Thus, for semisimple Lie algebras, a classification of irreducible (i.e. simple) representations leads immediately to classification of all representations. For other Lie algebra, which do not have this special property, classifying the irreducible representations may not help much in classifying general representations.

A Lie algebra is said to be reductive if the adjoint representation is semisimple. Certainly, every (finite-dimensional) semisimple Lie algebra is reductive, since every representation of is completely reducible, as we have just noted. In the other direction, the definition of a reductive Lie algebra means that it decomposes as a direct sum of ideals (i.e., invariant subspaces for the adjoint representation) that have no nontrivial sub-ideals. Some of these ideals will be one-dimensional and the rest are simple Lie algebras. Thus, a reductive Lie algebra is a direct sum of a commutative algebra and a semisimple algebra.

Invariants

An element v of V is said to be -invariant if for all . The set of all invariant elements is denoted by .

Basic constructions

Tensor products of representations

If we have two representations of a Lie algebra , with V1 and V2 as their underlying vector spaces, then the tensor product of the representations would have V1V2 as the underlying vector space, with the action of uniquely determined by the assumption that

for all and .

In the language of homomorphisms, this means that we define by the formula

. [5] This is called the Kronecker sum of and , defined in Matrix addition#Kronecker_sum and Kronecker product#Properties, and more specifically in Tensor product of representations.

In the physics literature, the tensor product with the identity operator is often suppressed in the notation, with the formula written as

,

where it is understood that acts on the first factor in the tensor product and acts on the second factor in the tensor product. In the context of representations of the Lie algebra su(2), the tensor product of representations goes under the name "addition of angular momentum." In this context, might, for example, be the orbital angular momentum while is the spin angular momentum.

Dual representations

Let be a Lie algebra and be a representation of . Let be the dual space, that is, the space of linear functionals on . Then we can define a representation by the formula

where for any operator , the transpose operator is defined as the "composition with " operator:

The minus sign in the definition of is needed to ensure that is actually a representation of , in light of the identity

If we work in a basis, then the transpose in the above definition can be interpreted as the ordinary matrix transpose.

Representation on linear maps

Let be -modules, a Lie algebra. Then becomes a -module by setting . In particular, ; that is to say, the -module homomorphisms from to are simply the elements of that are invariant under the just-defined action of on . If we take to be the base field, we recover the action of on given in the previous subsection.

Representation theory of semisimple Lie algebras

See Representation theory of semisimple Lie algebras.

Enveloping algebras

To each Lie algebra over a field k, one can associate a certain ring called the universal enveloping algebra of and denoted . The universal property of the universal enveloping algebra guarantees that every representation of gives rise to a representation of . Conversely, the PBW theorem tells us that sits inside , so that every representation of can be restricted to . Thus, there is a one-to-one correspondence between representations of and those of .

The universal enveloping algebra plays an important role in the representation theory of semisimple Lie algebras, described above. Specifically, the finite-dimensional irreducible representations are constructed as quotients of Verma modules, and Verma modules are constructed as quotients of the universal enveloping algebra. [6]

The construction of is as follows. [7] Let T be the tensor algebra of the vector space . Thus, by definition, and the multiplication on it is given by . Let be the quotient ring of T by the ideal generated by elements of the form

.

There is a natural linear map from into obtained by restricting the quotient map of to degree one piece. The PBW theorem implies that the canonical map is actually injective. Thus, every Lie algebra can be embedded into an associative algebra in such a way that the bracket on is given by in .

If is abelian, then is the symmetric algebra of the vector space .

Since is a module over itself via adjoint representation, the enveloping algebra becomes a -module by extending the adjoint representation. But one can also use the left and right regular representation to make the enveloping algebra a -module; namely, with the notation , the mapping defines a representation of on . The right regular representation is defined similarly.

Induced representation

Let be a finite-dimensional Lie algebra over a field of characteristic zero and a subalgebra. acts on from the right and thus, for any -module W, one can form the left -module . It is a -module denoted by and called the -module induced by W. It satisfies (and is in fact characterized by) the universal property: for any -module E

.

Furthermore, is an exact functor from the category of -modules to the category of -modules. These uses the fact that is a free right module over . In particular, if is simple (resp. absolutely simple), then W is simple (resp. absolutely simple). Here, a -module V is absolutely simple if is simple for any field extension .

The induction is transitive: for any Lie subalgebra and any Lie subalgebra . The induction commutes with restriction: let be subalgebra and an ideal of that is contained in . Set and . Then .

Infinite-dimensional representations and "category O"

Let be a finite-dimensional semisimple Lie algebra over a field of characteristic zero. (in the solvable or nilpotent case, one studies primitive ideals of the enveloping algebra; cf. Dixmier for the definitive account.)

The category of (possibly infinite-dimensional) modules over turns out to be too large especially for homological algebra methods to be useful: it was realized that a smaller subcategory category O is a better place for the representation theory in the semisimple case in zero characteristic. For instance, the category O turned out to be of a right size to formulate the celebrated BGG reciprocity.[ citation needed ]

(g,K)-module

One of the most important applications of Lie algebra representations is to the representation theory of real reductive Lie groups. The application is based on the idea that if is a Hilbert-space representation of, say, a connected real semisimple linear Lie group G, then it has two natural actions: the complexification and the connected maximal compact subgroup K. The -module structure of allows algebraic especially homological methods to be applied and -module structure allows harmonic analysis to be carried out in a way similar to that on connected compact semisimple Lie groups.

Representation on an algebra

If we have a Lie superalgebra L, then a representation of L on an algebra is a (not necessarily associative) Z2 graded algebra A which is a representation of L as a Z2 graded vector space and in addition, the elements of L acts as derivations/antiderivations on A.

More specifically, if H is a pure element of L and x and y are pure elements of A,

H[xy] = (H[x])y + (1)xHx(H[y])

Also, if A is unital, then

H[1] = 0

Now, for the case of a representation of a Lie algebra, we simply drop all the gradings and the (1) to the some power factors.

A Lie (super)algebra is an algebra and it has an adjoint representation of itself. This is a representation on an algebra: the (anti)derivation property is the super Jacobi identity.

If a vector space is both an associative algebra and a Lie algebra and the adjoint representation of the Lie algebra on itself is a representation on an algebra (i.e., acts by derivations on the associative algebra structure), then it is a Poisson algebra. The analogous observation for Lie superalgebras gives the notion of a Poisson superalgebra.

See also

Notes

  1. Hall 2015 Theorem 5.6
  2. Hall 2013 Section 17.3
  3. Hall 2015 Theorem 4.29
  4. Dixmier 1977 , Theorem 1.6.3
  5. Hall 2015 Section 4.3
  6. Hall 2015 Section 9.5
  7. Jacobson 1962

Related Research Articles

<span class="mw-page-title-main">Associative algebra</span> Ring that is also a vector space or a module

In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.

<span class="mw-page-title-main">Lie algebra</span> Algebraic structure used in analysis

In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. Otherwise said, a Lie algebra is an algebra over a field where the multiplication operation is now called Lie bracket and has two additional properties: it is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . The Lie bracket does not need to be associative, meaning that the Lie algebra can be non associative. Given an associative algebra, a Lie bracket can be and is often defined through the commutator, namely defining correctly defines a Lie bracket in addition to the already existing multiplication operation.

<span class="mw-page-title-main">Representation of a Lie group</span> Group representation

In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.

In the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group

In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N, i.e. φ is a self-map; in particular, any element of the center of a group must act as a scalar operator on M. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which are due to Jacques Dixmier and Daniel Quillen.

<span class="mw-page-title-main">Compact group</span> Topological group with compact topology

In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.

The representation theory of groups is a part of mathematics which examines how groups act on given structures.

In group theory, restriction forms a representation of a subgroup using a known representation of the whole group. Restriction is a fundamental construction in representation theory of groups. Often the restricted representation is simpler to understand. Rules for decomposing the restriction of an irreducible representation into irreducible representations of the subgroup are called branching rules, and have important applications in physics. For example, in case of explicit symmetry breaking, the symmetry group of the problem is reduced from the whole group to one of its subgroups. In quantum mechanics, this reduction in symmetry appears as a splitting of degenerate energy levels into multiplets, as in the Stark or Zeeman effect.

<span class="mw-page-title-main">Killing form</span>

In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria show that Killing form has a close relationship to the semisimplicity of the Lie algebras.

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras..

In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.

In geometry, a complex Lie group is a Lie group over the complex numbers; i.e., it is a complex-analytic manifold that is also a group in such a way is holomorphic. Basic examples are , the general linear groups over the complex numbers. A connected compact complex Lie group is precisely a complex torus. Any finite group may be given the structure of a complex Lie group. A complex semisimple Lie group is a linear algebraic group.

In differential geometry, a Lie-algebra-valued form is a differential form with values in a Lie algebra. Such forms have important applications in the theory of connections on a principal bundle as well as in the theory of Cartan connections.

Schur–Weyl duality is a mathematical theorem in representation theory that relates irreducible finite-dimensional representations of the general linear and symmetric groups. It is named after two pioneers of representation theory of Lie groups, Issai Schur, who discovered the phenomenon, and Hermann Weyl, who popularized it in his books on quantum mechanics and classical groups as a way of classifying representations of unitary and general linear groups.

In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.

In mathematics, the tensor product of representations is a tensor product of vector spaces underlying representations together with the factor-wise group action on the product. This construction, together with the Clebsch–Gordan procedure, can be used to generate additional irreducible representations if one already knows a few.

In mathematics, Lie group–Lie algebra correspondence allows one to correspond a Lie group to a Lie algebra or vice versa, and study the conditions for such a relationship. Lie groups that are isomorphic to each other have Lie algebras that are isomorphic to each other, but the converse is not necessarily true. One obvious counterexample is and which are non-isomorphic to each other as Lie groups but their Lie algebras are isomorphic to each other. However, by restricting our attention to the simply connected Lie groups, the Lie group-Lie algebra correspondence will be one-to-one.

In mathematics, and in particular representation theory, Frobenius reciprocity is a theorem expressing a duality between the process of restricting and inducting. It can be used to leverage knowledge about representations of a subgroup to find and classify representations of "large" groups that contain them. It is named for Ferdinand Georg Frobenius, the inventor of the representation theory of finite groups.

This is a glossary of representation theory in mathematics.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

References

Further reading