Adjoint representation

Last updated

In mathematics, the adjoint representation (or adjoint action) of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: .

Contents

For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of G on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields.

Definition

Let G be a Lie group, and let

be the mapping g ↦ Ψg, with Aut(G) the automorphism group of G and Ψg: GG given by the inner automorphism (conjugation)

This Ψ is a Lie group homomorphism.

For each g in G, define Adg to be the derivative of Ψg at the origin:

where d is the differential and is the tangent space at the origin e (e being the identity element of the group G). Since is a Lie group automorphism, Adg is a Lie algebra automorphism; i.e., an invertible linear transformation of to itself that preserves the Lie bracket. Moreover, since is a group homomorphism, too is a group homomorphism. [1] Hence, the map

is a group representation called the adjoint representation of G.

If G is an immersed Lie subgroup of the general linear group (called immersely linear Lie group), then the Lie algebra consists of matrices and the exponential map is the matrix exponential for matrices X with small operator norms. We will compute the derivative of at . For g in G and small X in , the curve has derivative at t = 0, one then gets:

where on the right we have the products of matrices. If is a closed subgroup (that is, G is a matrix Lie group), then this formula is valid for all g in G and all X in .

Succinctly, an adjoint representation is an isotropy representation associated to the conjugation action of G around the identity element of G.

Derivative of Ad

One may always pass from a representation of a Lie group G to a representation of its Lie algebra by taking the derivative at the identity.

Taking the derivative of the adjoint map

at the identity element gives the adjoint representation of the Lie algebra of G:

where is the Lie algebra of which may be identified with the derivation algebra of . One can show that

for all , where the right hand side is given (induced) by the Lie bracket of vector fields. Indeed, [2] recall that, viewing as the Lie algebra of left-invariant vector fields on G, the bracket on is given as: [3] for left-invariant vector fields X, Y,

where denotes the flow generated by X. As it turns out, , roughly because both sides satisfy the same ODE defining the flow. That is, where denotes the right multiplication by . On the other hand, since , by the chain rule,

as Y is left-invariant. Hence,

,

which is what was needed to show.

Thus, coincides with the same one defined in § Adjoint representation of a Lie algebra below. Ad and ad are related through the exponential map: Specifically, Adexp(x) = exp(adx) for all x in the Lie algebra. [4] It is a consequence of the general result relating Lie group and Lie algebra homomorphisms via the exponential map. [5]

If G is an immersely linear Lie group, then the above computation simplifies: indeed, as noted early, and thus with ,

.

Taking the derivative of this at , we have:

.

The general case can also be deduced from the linear case: indeed, let be an immersely linear Lie group having the same Lie algebra as that of G. Then the derivative of Ad at the identity element for G and that for G' coincide; hence, without loss of generality, G can be assumed to be G'.

The upper-case/lower-case notation is used extensively in the literature. Thus, for example, a vector x in the algebra generates a vector field X in the group G. Similarly, the adjoint map adxy = [x,y] of vectors in is homomorphic[ clarification needed ] to the Lie derivative LXY = [X,Y] of vector fields on the group G considered as a manifold.

Further see the derivative of the exponential map.

Adjoint representation of a Lie algebra

Let be a Lie algebra over some field. Given an element x of a Lie algebra , one defines the adjoint action of x on as the map

for all y in . It is called the adjoint endomorphism or adjoint action. ( is also often denoted as .) Since a bracket is bilinear, this determines the linear mapping

given by x ↦ adx. Within End, the bracket is, by definition, given by the commutator of the two operators:

where denotes composition of linear maps. Using the above definition of the bracket, the Jacobi identity

takes the form

where x, y, and z are arbitrary elements of .

This last identity says that ad is a Lie algebra homomorphism; i.e., a linear mapping that takes brackets to brackets. Hence, ad is a representation of a Lie algebra and is called the adjoint representation of the algebra .

If is finite-dimensional and a basis for it is chosen, then is the Lie algebra of square matrices and the composition corresponds to matrix multiplication.

In a more module-theoretic language, the construction says that is a module over itself.

The kernel of ad is the center of (that's just rephrasing the definition). On the other hand, for each element z in , the linear mapping obeys the Leibniz' law:

for all x and y in the algebra (the restatement of the Jacobi identity). That is to say, adz is a derivation and the image of under ad is a subalgebra of Der, the space of all derivations of .

When is the Lie algebra of a Lie group G, ad is the differential of Ad at the identity element of G.

There is the following formula similar to the Leibniz formula: for scalars and Lie algebra elements ,

Structure constants

The explicit matrix elements of the adjoint representation are given by the structure constants of the algebra. That is, let {ei} be a set of basis vectors for the algebra, with

Then the matrix elements for adei are given by

Thus, for example, the adjoint representation of su(2) is the defining representation of so(3).

Examples

Properties

The following table summarizes the properties of the various maps mentioned in the definition

Lie group homomorphism:
Lie group automorphism:
Lie group homomorphism:
Lie algebra automorphism:
  • is linear
Lie algebra homomorphism:
  • is linear
Lie algebra derivation:
  • is linear

The image of G under the adjoint representation is denoted by Ad(G). If G is connected, the kernel of the adjoint representation coincides with the kernel of Ψ which is just the center of G. Therefore, the adjoint representation of a connected Lie group G is faithful if and only if G is centerless. More generally, if G is not connected, then the kernel of the adjoint map is the centralizer of the identity component G0 of G. By the first isomorphism theorem we have

Given a finite-dimensional real Lie algebra , by Lie's third theorem, there is a connected Lie group whose Lie algebra is the image of the adjoint representation of (i.e., .) It is called the adjoint group of .

Now, if is the Lie algebra of a connected Lie group G, then is the image of the adjoint representation of G: .

Roots of a semisimple Lie group

If G is semisimple, the non-zero weights of the adjoint representation form a root system. [6] (In general, one needs to pass to the complexification of the Lie algebra before proceeding.) To see how this works, consider the case G = SL(n, R). We can take the group of diagonal matrices diag(t1, ..., tn) as our maximal torus T. Conjugation by an element of T sends

Thus, T acts trivially on the diagonal part of the Lie algebra of G and with eigenvectors titj1 on the various off-diagonal entries. The roots of G are the weights diag(t1, ..., tn) → titj1. This accounts for the standard description of the root system of G = SLn(R) as the set of vectors of the form eiej.

Example SL(2, R)

When computing the root system for one of the simplest cases of Lie Groups, the group SL(2, R) of two dimensional matrices with determinant 1 consists of the set of matrices of the form:

with a, b, c, d real and ad  bc = 1.

A maximal compact connected abelian Lie subgroup, or maximal torus T, is given by the subset of all matrices of the form

with . The Lie algebra of the maximal torus is the Cartan subalgebra consisting of the matrices

If we conjugate an element of SL(2, R) by an element of the maximal torus we obtain

The matrices

are then 'eigenvectors' of the conjugation operation with eigenvalues . The function Λ which gives is a multiplicative character, or homomorphism from the group's torus to the underlying field R. The function λ giving θ is a weight of the Lie Algebra with weight space given by the span of the matrices.

It is satisfying to show the multiplicativity of the character and the linearity of the weight. It can further be proved that the differential of Λ can be used to create a weight. It is also educational to consider the case of SL(3, R).

Variants and analogues

The adjoint representation can also be defined for algebraic groups over any field.[ clarification needed ]

The co-adjoint representation is the contragredient representation of the adjoint representation. Alexandre Kirillov observed that the orbit of any vector in a co-adjoint representation is a symplectic manifold. According to the philosophy in representation theory known as the orbit method (see also the Kirillov character formula), the irreducible representations of a Lie group G should be indexed in some way by its co-adjoint orbits. This relationship is closest in the case of nilpotent Lie groups.

See also

Notes

  1. Indeed, by the chain rule,
  2. Kobayashi & Nomizu 1996 , page 41
  3. Kobayashi & Nomizu 1996 , Proposition 1.9.
  4. Hall 2015 Proposition 3.35
  5. Hall 2015 Theorem 3.28
  6. Hall 2015 Section 7.3

Related Research Articles

<span class="mw-page-title-main">Lie algebra</span> Algebraic structure used in analysis

In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, with the Lie bracket defined as the commutator .

<span class="mw-page-title-main">Lie group</span> Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group that is also a differentiable manifold.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In linear algebra, the trace of a square matrix A, denoted tr(A), is defined to be the sum of elements on the main diagonal of A. The trace is only defined for a square matrix.

In quantum mechanics, a density matrix is a matrix that describes the quantum state of a physical system. It allows for the calculation of the probabilities of the outcomes of any measurement performed upon this system, using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed states. Mixed states arise in quantum mechanics in two different situations:

  1. when the preparation of the system is not fully known, and thus one must deal with a statistical ensemble of possible preparations, and
  2. when one wants to describe a physical system that is entangled with another, without describing their combined state; this case is typical for a system interacting with some environment.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

In mathematics, the Baker–Campbell–Hausdorff formula gives the value of that solves the equation

<span class="mw-page-title-main">Lie algebra representation</span>

In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

In mathematics and in theoretical physics, the Stone–von Neumann theorem refers to any one of a number of different formulations of the uniqueness of the canonical commutation relations between position and momentum operators. It is named after Marshall Stone and John von Neumann.

<span class="mw-page-title-main">Killing form</span>

In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria show that Killing form has a close relationship to the semisimplicity of the Lie algebras.

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras..

<span class="mw-page-title-main">Solvable Lie algebra</span>

In mathematics, a Lie algebra is solvable if its derived series terminates in the zero subalgebra. The derived Lie algebra of the Lie algebra is the subalgebra of , denoted

<span class="mw-page-title-main">Nilpotent Lie algebra</span>

In mathematics, a Lie algebra is nilpotent if its lower central series terminates in the zero subalgebra. The lower central series is the sequence of subalgebras

<span class="mw-page-title-main">Hermitian symmetric space</span> Manifold with inversion symmetry

In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.

In mathematics, an adjoint bundle is a vector bundle naturally associated to any principal bundle. The fibers of the adjoint bundle carry a Lie algebra structure making the adjoint bundle into a (nonassociative) algebra bundle. Adjoint bundles have important applications in the theory of connections as well as in gauge theory.

<span class="mw-page-title-main">Complexification (Lie group)</span> Universal construction of a complex Lie group from a real Lie group

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

In mathematics, Lie group–Lie algebra correspondence allows one to correspond a Lie group to a Lie algebra or vice versa, and study the conditions for such a relationship. Lie groups that are isomorphic to each other have Lie algebras that are isomorphic to each other, but the converse is not necessarily true. One obvious counterexample is and which are non-isomorphic to each other as Lie groups but their Lie algebras are isomorphic to each other. However, for simply connected Lie groups, the Lie group-Lie algebra correspondence is one-to-one.

<span class="mw-page-title-main">Exponential map (Lie theory)</span>

In the theory of Lie groups, the exponential map is a map from the Lie algebra of a Lie group to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups.

References