Lie groups and Lie algebras |
---|
![]() |
In the theory of Lie groups, the exponential map is a map from the Lie algebra of a Lie group to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups.
The ordinary exponential function of mathematical analysis is a special case of the exponential map when is the multiplicative group of positive real numbers (whose Lie algebra is the additive group of all real numbers). The exponential map of a Lie group satisfies many properties analogous to those of the ordinary exponential function, however, it also differs in many important respects.
Let be a Lie group and be its Lie algebra (thought of as the tangent space to the identity element of ). The exponential map is a map
which can be defined in several different ways. The typical modern definition is this:
It follows easily from the chain rule that . The map , a group homomorphism from to , may be constructed as the integral curve of either the right- or left-invariant vector field associated with . That the integral curve exists for all real parameters follows by right- or left-translating the solution near zero.
We have a more concrete definition in the case of a matrix Lie group. The exponential map coincides with the matrix exponential and is given by the ordinary series expansion:
where is the identity matrix. Thus, in the setting of matrix Lie groups, the exponential map is the restriction of the matrix exponential to the Lie algebra of .
If is compact, it has a Riemannian metric invariant under left and right translations, then the Lie-theoretic exponential map for coincides with the exponential map of this Riemannian metric.
For a general , there will not exist a Riemannian metric invariant under both left and right translations. Although there is always a Riemannian metric invariant under, say, left translations, the exponential map in the sense of Riemannian geometry for a left-invariant metric will not in general agree with the exponential map in the Lie group sense. That is to say, if is a Lie group equipped with a left- but not right-invariant metric, the geodesics through the identity will not be one-parameter subgroups of [ citation needed ].
Other equivalent definitions of the Lie-group exponential are as follows:
from the quotient by the lattice. Since is locally isomorphic to as complex manifolds, we can identify it with the tangent space , and the map
corresponds to the exponential map for the complex Lie group .
For all , the map is the unique one-parameter subgroup of whose tangent vector at the identity is . It follows that:
More generally:
The preceding identity does not hold in general; the assumption that and commute is important.
The image of the exponential map always lies in the identity component of .
The exponential map is a smooth map. Its differential at zero, , is the identity map (with the usual identifications).
It follows from the inverse function theorem that the exponential map, therefore, restricts to a diffeomorphism from some neighborhood of 0 in to a neighborhood of 1 in . [3]
It is then not difficult to show that if G is connected, every element g of G is a product of exponentials of elements of : [4] .
Globally, the exponential map is not necessarily surjective. Furthermore, the exponential map may not be a local diffeomorphism at all points. For example, the exponential map from (3) to SO(3) is not a local diffeomorphism; see also cut locus on this failure. See derivative of the exponential map for more information.
In these important special cases, the exponential map is known to always be surjective:
For groups not satisfying any of the above conditions, the exponential map may or may not be surjective.
The image of the exponential map of the connected but non-compact group SL2(R) is not the whole group. Its image consists of C-diagonalizable matrices with eigenvalues either positive or with modulus 1, and of non-diagonalizable matrices with a repeated eigenvalue 1, and the matrix . (Thus, the image excludes matrices with real, negative eigenvalues, other than .) [7]
Let be a Lie group homomorphism and let be its derivative at the identity. Then the following diagram commutes: [8]
In particular, when applied to the adjoint action of a Lie group , since , we have the useful identity: [9]
Given a Lie group with Lie algebra , each choice of a basis of determines a coordinate system near the identity element e for G, as follows. By the inverse function theorem, the exponential map is a diffeomorphism from some neighborhood of the origin to a neighborhood of . Its inverse:
is then a coordinate system on U. It is called by various names such as logarithmic coordinates, exponential coordinates or normal coordinates. See the closed-subgroup theorem for an example of how they are used in applications.
Remark: The open cover gives a structure of a real-analytic manifold to G such that the group operation is real-analytic. [10]
In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. The exponential of a variable is denoted or , with the two notations used interchangeably. It is called exponential because its argument can be seen as an exponent to which a constant number e ≈ 2.718, the base, is raised. There are several other definitions of the exponential function, which are all equivalent although being of very different nature.
In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, .
In mathematics, a Lie group is a group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable.
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In linear algebra, the trace of a square matrix A, denoted tr(A), is the sum of the elements on its main diagonal, . It is only defined for a square matrix.
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the -sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them.
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
The ordered exponential, also called the path-ordered exponential, is a mathematical operation defined in non-commutative algebras, equivalent to the exponential of the integral in the commutative algebras. In practice the ordered exponential is used in matrix and operator algebras. It is a kind of product integral, or Volterra integral.
In mathematics, the Baker–Campbell–Hausdorff formula gives the value of that solves the equation for possibly noncommutative X and Y in the Lie algebra of a Lie group. There are various ways of writing the formula, but all ultimately yield an expression for in Lie algebraic terms, that is, as a formal series in and and iterated commutators thereof. The first few terms of this series are: where "" indicates terms involving higher commutators of and . If and are sufficiently small elements of the Lie algebra of a Lie group , the series is convergent. Meanwhile, every element sufficiently close to the identity in can be expressed as for a small in . Thus, we can say that near the identity the group multiplication in —written as —can be expressed in purely Lie algebraic terms. The Baker–Campbell–Hausdorff formula can be used to give comparatively simple proofs of deep results in the Lie group–Lie algebra correspondence.
In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.
In mathematics, the adjoint representation of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: .
In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.
In differential geometry, pushforward is a linear approximation of smooth maps on tangent spaces. Suppose that is a smooth map between smooth manifolds; then the differential of at a point , denoted , is, in some sense, the best linear approximation of near . It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of at to the tangent space of at , . Hence it can be used to push tangent vectors on forward to tangent vectors on . The differential of a map is also called, by various authors, the derivative or total derivative of .
In mathematics, a symmetric space is a Riemannian manifold whose group of isometries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis.
In mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold M is a certain type of mapping, from M to itself, with rather clearly marked local directions of "expansion" and "contraction". Anosov systems are a special case of Axiom A systems.
In the study of mathematics, and especially of differential geometry, fundamental vector fields are instruments that describe the infinitesimal behaviour of a smooth Lie group action on a smooth manifold. Such vector fields find important applications in the study of Lie theory, symplectic geometry, and the study of Hamiltonian group actions.
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.
In mathematics, Lie group–Lie algebra correspondence allows one to correspond a Lie group to a Lie algebra or vice versa, and study the conditions for such a relationship. Lie groups that are isomorphic to each other have Lie algebras that are isomorphic to each other, but the converse is not necessarily true. One obvious counterexample is and which are non-isomorphic to each other as Lie groups but their Lie algebras are isomorphic to each other. However, for simply connected Lie groups, the Lie group-Lie algebra correspondence is one-to-one.
In mathematics, convenient vector spaces are locally convex vector spaces satisfying a very mild completeness condition.
This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.