In differential geometry, parallel transport (or parallel translation [lower-alpha 1] ) is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection (a covariant derivative or connection on the tangent bundle), then this connection allows one to transport vectors of the manifold along curves so that they stay parallel with respect to the connection.
The parallel transport for a connection thus supplies a way of, in some sense, moving the local geometry of a manifold along a curve: that is, of connecting the geometries of nearby points. There may be many notions of parallel transport available, but a specification of one way of connecting up the geometries of points on a curve is tantamount to providing a connection. In fact, the usual notion of connection is the infinitesimal analog of parallel transport. Or, vice versa, parallel transport is the local realization of a connection.
As parallel transport supplies a local realization of the connection, it also supplies a local realization of the curvature known as holonomy. The Ambrose–Singer theorem makes explicit this relationship between the curvature and holonomy.
Other notions of connection come equipped with their own parallel transportation systems as well. For instance, a Koszul connection in a vector bundle also allows for the parallel transport of vectors in much the same way as with a covariant derivative. An Ehresmann or Cartan connection supplies a lifting of curves from the manifold to the total space of a principal bundle. Such curve lifting may sometimes be thought of as the parallel transport of reference frames.
Let be a smooth manifold. For each point , there is an associated vector space called the tangent space of at . Vectors in are thought of as the vectors tangent to at . A Riemannian metric on assigns to each a positive-definite inner product in a smooth way. A smooth manifold endowed with a Riemannian metric is a Riemannian manifold, denoted .
Let denote the standard coordinates on The Euclidean metric is given by
Euclidean space is the Riemannian manifold .
In Euclidean space, all tangent spaces are canonically identified with each other via translation, so it is easy to move vectors from one tangent space to another. Parallel transport of tangent vectors is a way of moving vectors from one tangent space to another along a curve in the setting of a general Riemannian manifold. Note that while the vectors are in the tangent space of the manifold, they might not be in the tangent space of the curve they are being transported along.
An affine connection on a Riemannian manifold is a way of differentiating vector fields with respect to other vector fields. A Riemannian manifold has a natural choice of affine connection called the Levi-Civita connection. Given a fixed affine connection on a Riemannian manifold, there is a unique way to do parallel transport of tangent vectors. [3] Different choices of affine connections will lead to different systems of parallel transport.
Let M be a manifold with an affine connection ∇. Then a vector field X is said to be parallel if for any vector field Y, ∇YX = 0. Intuitively speaking, parallel vector fields have all their derivatives equal to zero and are therefore in some sense constant. By evaluating a parallel vector field at two points x and y, an identification between a tangent vector at x and one at y is obtained. Such tangent vectors are said to be parallel transports of each other.
More precisely, if γ : I → M a smooth curve parametrized by an interval [a, b] and ξ ∈ TxM, where x = γ(a), then a vector field X along γ (and in particular, the value of this vector field at y = γ(b)) is called the parallel transport of ξ along γ if
Formally, the first condition means that X is parallel with respect to the pullback connection on the pullback bundle γ∗TM. However, in a local trivialization it is a first-order system of linear ordinary differential equations, which has a unique solution for any initial condition given by the second condition (for instance, by the Picard–Lindelöf theorem).
The parallel transport of to the tangent space along the curve is denoted by . The map
is linear. In fact, it is an isomorphism. Let be the inverse curve . Then is the inverse of .
To summarize, parallel transport provides a way of moving tangent vectors along a curve using the affine connection to keep them "pointing in the same direction" in an intuitive sense, and this provides a linear isomorphism between the tangent spaces at the two ends of the curve. The isomorphism obtained in this way will in general depend on the choice of the curve. If it does not, then parallel transport along every curve can be used to define parallel vector fields on M, which can only happen if the curvature of ∇ is zero.
A linear isomorphism is determined by its action on an ordered basis or frame. Hence parallel transport can also be characterized as a way of transporting elements of the (tangent) frame bundle GL(M) along a curve. In other words, the affine connection provides a lift of any curve γ in M to a curve γ̃ in GL(M).
The images below show parallel transport induced by the Levi-Civita connection associated to two different Riemannian metrics on the punctured plane . The curve the parallel transport is done along is the unit circle. In polar coordinates, the metric on the left is the standard Euclidean metric , while the metric on the right is . This second metric has a singularity at the origin, so it does not extend past the puncture, but the first metric extends to the entire plane.
Warning: This is parallel transport on the punctured plane along the unit circle, not parallel transport on the unit circle. Indeed, in the first image, the vectors fall outside of the tangent space to the unit circle. Since the first metric has zero curvature, the transport between two points along the circle could be accomplished along any other curve as well. However, the second metric has non-zero curvature, and the circle is a geodesic, so that its field of tangent vectors is parallel.
A metric connection is any connection whose parallel transport mappings preserve the Riemannian metric, that is, for any curve and any two vectors ,
Taking the derivative at t = 0, the operator ∇ satisfies a product rule with respect to the metric, namely
An affine connection distinguishes a class of curves called (affine) geodesics. [4] A smooth curve γ: I→M is an affine geodesic if is parallel transported along , that is
Taking the derivative with respect to time, this takes the more familiar form
If ∇ is a metric connection, then the affine geodesics are the usual geodesics of Riemannian geometry and are the locally distance minimizing curves. More precisely, first note that if γ: I→M, where I is an open interval, is a geodesic, then the norm of is constant on I. Indeed,
It follows from an application of Gauss's lemma that if A is the norm of then the distance, induced by the metric, between two close enough points on the curve γ, say γ(t1) and γ(t2), is given by
The formula above might not be true for points which are not close enough since the geodesic might for example wrap around the manifold (e.g. on a sphere).
Parallel transport of tangent vectors is a special case of a more general construction involving an arbitrary vector bundle . Specifically, parallel transport of tangent vectors is the case where is the tangent bundle .
Let M be a smooth manifold. Let E → M be a vector bundle with connection ∇ and γ: I → M a smooth curve parameterized by an open interval I. A section of along γ is called parallel if
In the case when is the tangent bundle whereby is a tangent vector field, this expression means that, for every in the interval, tangent vectors in are "constant" (the derivative vanishes) when an infinitesimal displacement from in the direction of the tangent vector is done.
Suppose we are given an element e0∈EP at P = γ(0) ∈M, rather than a section. The parallel transport of e0 along γ is the extension of e0 to a parallel sectionX on γ. More precisely, X is the unique part of E along γ such that
Note that in any given coordinate patch, (1) defines an ordinary differential equation, with the initial condition given by (2). Thus the Picard–Lindelöf theorem guarantees the existence and uniqueness of the solution.
Thus the connection ∇ defines a way of moving elements of the fibers along a curve, and this provides linear isomorphisms between the fibers at points along the curve:
from the vector space lying over γ(s) to that over γ(t). This isomorphism is known as the parallel transport map associated to the curve. The isomorphisms between fibers obtained in this way will, in general, depend on the choice of the curve: if they do not, then parallel transport along every curve can be used to define parallel sections of E over all of M. This is only possible if the curvature of ∇ is zero.
In particular, parallel transport around a closed curve starting at a point x defines an automorphism of the tangent space at x which is not necessarily trivial. The parallel transport automorphisms defined by all closed curves based at x form a transformation group called the holonomy group of ∇ at x. There is a close relation between this group and the value of the curvature of ∇ at x; this is the content of the Ambrose–Singer holonomy theorem.
Given a covariant derivative ∇, the parallel transport along a curve γ is obtained by integrating the condition . Conversely, if a suitable notion of parallel transport is available, then a corresponding connection can be obtained by differentiation. This approach is due, essentially, to Knebelman (1951); see Guggenheimer (1977). Lumiste (2001) also adopts this approach.
Consider an assignment to each curve γ in the manifold a collection of mappings
such that
The notion of smoothness in condition 3. is somewhat difficult to pin down (see the discussion below of parallel transport in fibre bundles). In particular, modern authors such as Kobayashi and Nomizu generally view the parallel transport of the connection as coming from a connection in some other sense, where smoothness is more easily expressed.
Nevertheless, given such a rule for parallel transport, it is possible to recover the associated infinitesimal connection in E as follows. Let γ be a differentiable curve in M with initial point γ(0) and initial tangent vector X = γ′(0). If V is a section of E over γ, then let
This defines the associated infinitesimal connection ∇ on E. One recovers the same parallel transport Γ from this infinitesimal connection.
The parallel transport can be defined in greater generality for other types of connections, not just those defined in a vector bundle. One generalization is for principal connections ( Kobayashi & Nomizu 1996 , Volume 1, Chapter II). Let P→M be a principal bundle over a manifold M with structure Lie group G and a principal connection ω. As in the case of vector bundles, a principal connection ω on P defines, for each curve γ in M, a mapping
from the fibre over γ(s) to that over γ(t), which is an isomorphism of homogeneous spaces: i.e. for each g∈G.
Further generalizations of parallel transport are also possible. In the context of Ehresmann connections, where the connection depends on a special notion of "horizontal lifting" of tangent spaces, one can define parallel transport via horizontal lifts. Cartan connections are Ehresmann connections with additional structure which allows the parallel transport to be thought of as a map "rolling" a certain model space along a curve in the manifold. This rolling is called development.
Parallel transport can be discretely approximated by Schild's ladder, which takes finite steps along a curve, and approximates Levi-Civita parallelogramoids by approximate parallelograms.
In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the -sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them.
In Riemannian or pseudo-Riemannian geometry, the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold that preserves the (pseudo-)Riemannian metric and is torsion-free.
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.
In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold M where a (possibly asymmetric) Minkowski normF(x, −) is provided on each tangent space TxM, that enables one to define the length of any smooth curve γ : [a, b] → M as
In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The most common case is that of a linear connection on a vector bundle, for which the notion of parallel transport must be linear. A linear connection is equivalently specified by a covariant derivative, an operator that differentiates sections of the bundle along tangent directions in the base manifold, in such a way that parallel sections have derivative zero. Linear connections generalize, to arbitrary vector bundles, the Levi-Civita connection on the tangent bundle of a pseudo-Riemannian manifold, which gives a standard way to differentiate vector fields. Nonlinear connections generalize this concept to bundles whose fibers are not necessarily linear.
In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the geometry of the base manifold using a solder form. Cartan connections describe the geometry of manifolds modelled on homogeneous spaces.
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.
This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.
In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.
In differential geometry, the holonomy of a connection on a smooth manifold is the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. Holonomy is a general geometrical consequence of the curvature of the connection. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.
In mathematics, a sub-Riemannian manifold is a certain type of generalization of a Riemannian manifold. Roughly speaking, to measure distances in a sub-Riemannian manifold, you are allowed to go only along curves tangent to so-called horizontal subspaces.
When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.
In differential geometry, the torsion tensor is a tensor that is associated to any affine connection. The torsion tensor is a bilinear map of two input vectors , that produces an output vector representing the displacement within a tangent space when the tangent space is developed along an infinitesimal parallelogram whose sides are . It is skew symmetric in its inputs, because developing over the parallelogram in the opposite sense produces the opposite displacement, similarly to how a screw moves in opposite ways when it is twisted in two directions.
In mathematics, the geodesic equations are second-order non-linear differential equations, and are commonly presented in the form of Euler–Lagrange equations of motion. However, they can also be presented as a set of coupled first-order equations, in the form of Hamilton's equations. This latter formulation is developed in this article.
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric.
In the theory of general relativity, and differential geometry more generally, Schild's ladder is a first-order method for approximating parallel transport of a vector along a curve using only affinely parametrized geodesics. The method is named for Alfred Schild, who introduced the method during lectures at Princeton University.
In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form with principal bundles only in the 1950s. The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds. This account is intended as an introduction to the theory of connections.
In mathematics, the Cartan–Ambrose–Hicks theorem is a theorem of Riemannian geometry, according to which the Riemannian metric is locally determined by the Riemann curvature tensor, or in other words, behavior of the curvature tensor under parallel translation determines the metric.