Geometry |
---|

Geometers |

**Differential geometry** is a mathematical discipline that uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry. The theory of plane and space curves and surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry during the 18th century and the 19th century.

- History of development
- Branches
- Riemannian geometry
- Pseudo-Riemannian geometry
- Finsler geometry
- Symplectic geometry
- Contact geometry
- Complex and Kähler geometry
- CR geometry
- Conformal geometry
- Differential topology
- Lie groups
- Gauge theory
- Bundles and connections
- Intrinsic versus extrinsic
- Applications
- See also
- References
- Further reading
- External links

Since the late 19th century, differential geometry has grown into a field concerned more generally with the geometric structures on differentiable manifolds. Differential geometry is closely related to differential topology and the geometric aspects of the theory of differential equations. The differential geometry of surfaces captures many of the key ideas and techniques endemic to this field.

This section possibly contains synthesis of material which does not verifiably mention or relate to the main topic.(February 2017) (Learn how and when to remove this template message) |

Differential geometry arose and developed as a result of and in connection to the mathematical analysis of curves and surfaces.^{ [1] } Mathematical analysis of curves and surfaces had been developed to answer some of the nagging and unanswered questions that appeared in calculus, like the reasons for relationships between complex shapes and curves, series and analytic functions. These unanswered questions indicated greater, hidden relationships.

When curves, surfaces enclosed by curves, and points on curves were found to be quantitatively, and generally, related by mathematical forms, the formal study of the nature of curves and surfaces became a field of study in its own right, with Monge's paper in 1795, and especially, with Gauss's publication of his article, titled 'Disquisitiones Generales Circa Superficies Curvas', in *Commentationes Societatis Regiae Scientiarum Gottingesis Recentiores* in 1827.^{ [2] }

Initially applied to the Euclidean space, further explorations led to non-Euclidean space, and metric and topological spaces.

Riemannian geometry studies Riemannian manifolds, smooth manifolds with a *Riemannian metric*. This is a concept of distance expressed by means of a smooth positive definite symmetric bilinear form defined on the tangent space at each point. Riemannian geometry generalizes Euclidean geometry to spaces that are not necessarily flat, although they still resemble the Euclidean space at each point infinitesimally, i.e. in the first order of approximation. Various concepts based on length, such as the arc length of curves, area of plane regions, and volume of solids all possess natural analogues in Riemannian geometry. The notion of a directional derivative of a function from multivariable calculus is extended in Riemannian geometry to the notion of a covariant derivative of a tensor. Many concepts and techniques of analysis and differential equations have been generalized to the setting of Riemannian manifolds.

A distance-preserving diffeomorphism between Riemannian manifolds is called an isometry. This notion can also be defined *locally*, i.e. for small neighborhoods of points. Any two regular curves are locally isometric. However, the Theorema Egregium of Carl Friedrich Gauss showed that for surfaces, the existence of a local isometry imposes strong compatibility conditions on their metrics: the Gaussian curvatures at the corresponding points must be the same. In higher dimensions, the Riemann curvature tensor is an important pointwise invariant associated with a Riemannian manifold that measures how close it is to being flat. An important class of Riemannian manifolds is the Riemannian symmetric spaces, whose curvature is not necessarily constant. These are the closest analogues to the "ordinary" plane and space considered in Euclidean and non-Euclidean geometry.

Pseudo-Riemannian geometry generalizes Riemannian geometry to the case in which the metric tensor need not be positive-definite. A special case of this is a Lorentzian manifold, which is the mathematical basis of Einstein's general relativity theory of gravity.

Finsler geometry has *Finsler manifolds* as the main object of study. This is a differential manifold with a *Finsler metric*, that is, a Banach norm defined on each tangent space. Riemannian manifolds are special cases of the more general Finsler manifolds. A Finsler structure on a manifold *M* is a function *F* : T*M* → [0, ∞) such that:

*F*(*x*,*my*) =*m**F*(*x*,*y*) for all (*x*,*y*) in T*M*and all*m*≥0,*F*is infinitely differentiable in T*M*∖ {0},- The vertical Hessian of
*F*^{2}is positive definite.

Symplectic geometry is the study of symplectic manifolds. An **almost symplectic manifold** is a differentiable manifold equipped with a smoothly varying non-degenerate skew-symmetric bilinear form on each tangent space, i.e., a nondegenerate 2-form *ω*, called the *symplectic form*. A symplectic manifold is an almost symplectic manifold for which the symplectic form *ω* is closed: d*ω* = 0.

A diffeomorphism between two symplectic manifolds which preserves the symplectic form is called a symplectomorphism. Non-degenerate skew-symmetric bilinear forms can only exist on even-dimensional vector spaces, so symplectic manifolds necessarily have even dimension. In dimension 2, a symplectic manifold is just a surface endowed with an area form and a symplectomorphism is an area-preserving diffeomorphism. The phase space of a mechanical system is a symplectic manifold and they made an implicit appearance already in the work of Joseph Louis Lagrange on analytical mechanics and later in Carl Gustav Jacobi's and William Rowan Hamilton's formulations of classical mechanics.

By contrast with Riemannian geometry, where the curvature provides a local invariant of Riemannian manifolds, Darboux's theorem states that all symplectic manifolds are locally isomorphic. The only invariants of a symplectic manifold are global in nature and topological aspects play a prominent role in symplectic geometry. The first result in symplectic topology is probably the Poincaré–Birkhoff theorem, conjectured by Henri Poincaré and then proved by G.D. Birkhoff in 1912. It claims that if an area preserving map of an annulus twists each boundary component in opposite directions, then the map has at least two fixed points.^{ [3] }

Contact geometry deals with certain manifolds of odd dimension. It is close to symplectic geometry and like the latter, it originated in questions of classical mechanics. A *contact structure* on a (2*n* + 1)-dimensional manifold *M* is given by a smooth hyperplane field *H* in the tangent bundle that is as far as possible from being associated with the level sets of a differentiable function on *M* (the technical term is "completely nonintegrable tangent hyperplane distribution"). Near each point *p*, a hyperplane distribution is determined by a nowhere vanishing 1-form , which is unique up to multiplication by a nowhere vanishing function:

A local 1-form on *M* is a *contact form* if the restriction of its exterior derivative to *H* is a non-degenerate two-form and thus induces a symplectic structure on *H*_{p} at each point. If the distribution *H* can be defined by a global one-form then this form is contact if and only if the top-dimensional form

is a volume form on *M*, i.e. does not vanish anywhere. A contact analogue of the Darboux theorem holds: all contact structures on an odd-dimensional manifold are locally isomorphic and can be brought to a certain local normal form by a suitable choice of the coordinate system.

*Complex differential geometry* is the study of complex manifolds. An almost complex manifold is a *real* manifold , endowed with a tensor of type (1, 1), i.e. a vector bundle endomorphism (called an * almost complex structure *)

- , such that

It follows from this definition that an almost complex manifold is even-dimensional.

An almost complex manifold is called *complex* if , where is a tensor of type (2, 1) related to , called the Nijenhuis tensor (or sometimes the *torsion*). An almost complex manifold is complex if and only if it admits a holomorphic coordinate atlas. An * almost Hermitian structure * is given by an almost complex structure *J*, along with a Riemannian metric *g*, satisfying the compatibility condition

- .

An almost Hermitian structure defines naturally a differential two-form

- .

The following two conditions are equivalent:

where is the Levi-Civita connection of . In this case, is called a * Kähler structure *, and a *Kähler manifold* is a manifold endowed with a Kähler structure. In particular, a Kähler manifold is both a complex and a symplectic manifold. A large class of Kähler manifolds (the class of Hodge manifolds) is given by all the smooth complex projective varieties.

CR geometry is the study of the intrinsic geometry of boundaries of domains in complex manifolds.

Conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space.

Differential topology is the study of global geometric invariants without a metric or symplectic form.

Differential topology starts from the natural operations such as Lie derivative of natural vector bundles and de Rham differential of forms. Beside Lie algebroids, also Courant algebroids start playing a more important role.

A Lie group is a group in the category of smooth manifolds. Beside the algebraic properties this enjoys also differential geometric properties. The most obvious construction is that of a Lie algebra which is the tangent space at the unit endowed with the Lie bracket between left-invariant vector fields. Beside the structure theory there is also the wide field of representation theory.

Gauge theory is the study of connections on vector bundles and principal bundles, and arises out of problems in mathematical physics and physical gauge theories which underpin the standard model of particle physics. Gauge theory is concerned with the study of differential equations for connections on bundles, and the resulting geometric moduli spaces of solutions to these equations as well as the invariants that may be derived from them. These equations often arise as the Euler–Lagrange equations describing the equations of motion of certain physical systems in quantum field theory, and so their study is of considerable interest in physics.

The apparatus of vector bundles, principal bundles, and connections on bundles plays an extraordinarily important role in modern differential geometry. A smooth manifold always carries a natural vector bundle, the tangent bundle. Loosely speaking, this structure by itself is sufficient only for developing analysis on the manifold, while doing geometry requires, in addition, some way to relate the tangent spaces at different points, i.e. a notion of parallel transport. An important example is provided by affine connections. For a surface in **R**^{3}, tangent planes at different points can be identified using a natural path-wise parallelism induced by the ambient Euclidean space, which has a well-known standard definition of metric and parallelism. In Riemannian geometry, the Levi-Civita connection serves a similar purpose. (The Levi-Civita connection defines path-wise parallelism in terms of a given arbitrary Riemannian metric on a manifold.) More generally, differential geometers consider spaces with a vector bundle and an arbitrary affine connection which is not defined in terms of a metric. In physics, the manifold may be the space-time continuum and the bundles and connections are related to various physical fields.

From the beginning and through the middle of the 19th century, differential geometry was studied from the *extrinsic* point of view: curves and surfaces were considered as lying in a Euclidean space of higher dimension (for example a surface in an ambient space of three dimensions). The simplest results are those in the differential geometry of curves and differential geometry of surfaces. Starting with the work of Riemann, the *intrinsic* point of view was developed, in which one cannot speak of moving "outside" the geometric object because it is considered to be given in a free-standing way. The fundamental result here is Gauss's theorema egregium, to the effect that Gaussian curvature is an intrinsic invariant.

The intrinsic point of view is more flexible. For example, it is useful in relativity where space-time cannot naturally be taken as extrinsic (what would be "outside" of the universe?). However, there is a price to pay in technical complexity: the intrinsic definitions of curvature and connections become much less visually intuitive.

These two points of view can be reconciled, i.e. the extrinsic geometry can be considered as a structure additional to the intrinsic one. (See the Nash embedding theorem.) In the formalism of geometric calculus both extrinsic and intrinsic geometry of a manifold can be characterized by a single bivector-valued one-form called the shape operator.^{ [4] }

Part of a series on |

Spacetime |
---|

Below are some examples of how differential geometry is applied to other fields of science and mathematics.

- In physics, differential geometry has many applications, including:
- Differential geometry is the language in which Albert Einstein's general theory of relativity is expressed. According to the theory, the universe is a smooth manifold equipped with a pseudo-Riemannian metric, which describes the curvature of spacetime. Understanding this curvature is essential for the positioning of satellites into orbit around the earth. Differential geometry is also indispensable in the study of gravitational lensing and black holes.
- Differential forms are used in the study of electromagnetism.
- Differential geometry has applications to both Lagrangian mechanics and Hamiltonian mechanics. Symplectic manifolds in particular can be used to study Hamiltonian systems.
- Riemannian geometry and contact geometry have been used to construct the formalism of geometrothermodynamics which has found applications in classical equilibrium thermodynamics.

- In chemistry and biophysics when modelling cell membrane structure under varying pressure.
- In economics, differential geometry has applications to the field of econometrics.
^{ [5] } - Geometric modeling (including computer graphics) and computer-aided geometric design draw on ideas from differential geometry.
- In engineering, differential geometry can be applied to solve problems in digital signal processing.
^{ [6] } - In control theory, differential geometry can be used to analyze nonlinear controllers, particularly geometric control
^{ [7] } - In probability, statistics, and information theory, one can interpret various structures as Riemannian manifolds, which yields the field of information geometry, particularly via the Fisher information metric.
- In structural geology, differential geometry is used to analyze and describe geologic structures.
- In computer vision, differential geometry is used to analyze shapes.
^{ [8] } - In image processing, differential geometry is used to process and analyse data on non-flat surfaces.
^{ [9] } - Grigori Perelman's proof of the Poincaré conjecture using the techniques of Ricci flows demonstrated the power of the differential-geometric approach to questions in topology and it highlighted the important role played by its analytic methods.
- In wireless communications, Grassmannian manifolds are used for beamforming techniques in multiple antenna systems.
^{ [10] }

- Abstract differential geometry
- Affine differential geometry
- Analysis on fractals
- Basic introduction to the mathematics of curved spacetime
- Discrete differential geometry
- Gauss
- Glossary of differential geometry and topology
- Important publications in differential geometry
- Important publications in differential topology
- Integral geometry
- List of differential geometry topics
- Noncommutative geometry
- Projective differential geometry
- Synthetic differential geometry
- Systolic geometry
- Gauge theory (mathematics)

In mathematics, **differential topology** is the field dealing with differentiable functions on differentiable manifolds. It is closely related to differential geometry and together they make up the geometric theory of differentiable manifolds.

In mathematics, **complex geometry** is the study of complex manifolds, complex algebraic varieties, and functions of several complex variables. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

**Riemannian geometry** is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a *Riemannian metric*, i.e. with an inner product on the tangent space at each point that varies smoothly from point to point. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions.

**Symplectic geometry** is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold.

In mathematics and especially differential geometry, a **Kähler manifold** is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil.

In mathematics, the **Chern theorem** states that the Euler-Poincaré characteristic of a closed even-dimensional Riemannian manifold is equal to the integral of a certain polynomial of its curvature form.

In mathematics, **contact geometry** is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

In Differential geometry, an **affine connection** is a geometric object on a smooth manifold which *connects* nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. The notion of an affine connection has its roots in 19th-century geometry and tensor calculus, but was not fully developed until the early 1920s, by Élie Cartan and Hermann Weyl. The terminology is due to Cartan and has its origins in the identification of tangent spaces in Euclidean space **R**^{n} by translation: the idea is that a choice of affine connection makes a manifold look infinitesimally like Euclidean space not just smoothly, but as an affine space.

In mathematics, **low-dimensional topology** is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

In mathematics, a **manifold** is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or *n-manifold* for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to the Euclidean space of dimension n.

In mathematics, a **differentiable manifold** is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. Any manifold can be described by a collection of charts, also known as an atlas. One may then apply ideas from calculus while working within the individual charts, since each chart lies within a linear space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

**Geometric analysis** is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations are used to establish new results in differential geometry and differential topology. The use of linear elliptic PDEs dates at least as far back as Hodge theory. More recently, it refers largely to the use of nonlinear partial differential equations to study geometric and topological properties of spaces, such as submanifolds of Euclidean space, Riemannian manifolds, and symplectic manifolds. This approach dates back to the work by Tibor Radó and Jesse Douglas on minimal surfaces, John Forbes Nash Jr. on isometric embeddings of Riemannian manifolds into Euclidean space, work by Louis Nirenberg on the Minkowski problem and the Weyl problem, and work by Aleksandr Danilovich Aleksandrov and Aleksei Pogorelov on convex hypersurfaces. In the 1980s fundamental contributions by Karen Uhlenbeck, Clifford Taubes, Shing-Tung Yau, Richard Schoen, and Richard Hamilton launched a particularly exciting and productive era of geometric analysis that continues to this day. A celebrated achievement was the solution to the Poincaré conjecture by Grigori Perelman, completing a program initiated and largely carried out by Richard Hamilton.

In Riemannian geometry, the **unit tangent bundle** of a Riemannian manifold (*M*, *g*), denoted by T^{1}*M*, UT(*M*) or simply UT*M*, is the unit sphere bundle for the tangent bundle T(*M*). It is a fiber bundle over *M* whose fiber at each point is the unit sphere in the tangent bundle:

In mathematics, spaces of **non-positive curvature** occur in many contexts and form a generalization of hyperbolic geometry. In the category of Riemannian manifolds, one can consider the sectional curvature of the manifold and require that this curvature be everywhere less than or equal to zero. The notion of curvature extends to the category of geodesic metric spaces, where one can use comparison triangles to quantify the curvature of a space; in this context, non-positively curved spaces are known as (locally) CAT(0) spaces.

In mathematics, **geometry and topology** is an umbrella term for the historically distinct disciplines of geometry and topology, as general frameworks allow both disciplines to be manipulated uniformly, most visibly in local to global theorems in Riemannian geometry, and results like the Gauss–Bonnet theorem and Chern–Weil theory.

In mathematics, the **differential geometry of surfaces** deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: *extrinsically*, relating to their embedding in Euclidean space and *intrinsically*, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

The **Geometry Festival** is an annual mathematics conference held in the United States.

In mathematics, the **Riemannian connection on a surface** or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form with principal bundles only in the 1950s. The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds. This account is intended as an introduction to the theory of connections.

- ↑ http://www.encyclopediaofmath.org/index.php/Differential_geometry be
- ↑ 'Disquisitiones Generales Circa Superficies Curvas' (literal translation from Latin: General Investigations of Curved Surfaces),
*Commentationes Societatis Regiae Scientiarum Gottingesis Recentiores*(literally, Recent Perspectives, Gottingen's Royal Society of Science). Volume VI, pp. 99–146. A translation of the work, by A.M.Hiltebeitel and J.C.Morehead, titled, "General Investigations of Curved Surfaces" was published 1965 by Raven Press, New York. A digitised version of the same is available at http://quod.lib.umich.edu/u/umhistmath/abr1255.0001.001 for free download, for non-commercial, personal use. In case of further information, the library could be contacted. Also, the Wikipedia article on Gauss's works in the year 1827 at could be looked at. - ↑ The area preserving condition (or the twisting condition) cannot be removed. If one tries to extend such a theorem to higher dimensions, one would probably guess that a volume preserving map of a certain type must have fixed points. This is false in dimensions greater than 3.
- ↑ Hestenes, David (2011). "The Shape of Differential Geometry in Geometric Calculus" (PDF). In Dorst, L.; Lasenby, J. (eds.).
*Guide to Geometric Algebra in Practice*. Springer Verlag. pp. 393–410. There is also a pdf^{[ permanent dead link ]}available of a scientific talk on the subject - ↑ Marriott, Paul; Salmon, Mark, eds. (2000).
*Applications of Differential Geometry to Econometrics*. Cambridge University Press. ISBN 978-0-521-65116-5. - ↑ Manton, Jonathan H. (2005). "On the role of differential geometry in signal processing".
*Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005*.**5**. pp. 1021–1024. doi:10.1109/ICASSP.2005.1416480. ISBN 978-0-7803-8874-1. S2CID 12265584. - ↑ Bullo, Francesco; Lewis, Andrew (2010).
*Geometric Control of Mechanical Systems : Modeling, Analysis, and Design for Simple Mechanical Control Systems*. Springer-Verlag. ISBN 978-1-4419-1968-7. - ↑ Micheli, Mario (May 2008).
*The Differential Geometry of Landmark Shape Manifolds: Metrics, Geodesics, and Curvature*(PDF) (Ph.D.). Archived from the original (PDF) on June 4, 2011. - ↑ Joshi, Anand A. (August 2008).
*Geometric Methods for Image Processing and Signal Analysis*(PDF) (Ph.D.). - ↑ Love, David J.; Heath, Robert W., Jr. (October 2003). "Grassmannian Beamforming for Multiple-Input Multiple-Output Wireless Systems" (PDF).
*IEEE Transactions on Information Theory*.**49**(10): 2735–2747. CiteSeerX 10.1.1.106.4187 . doi:10.1109/TIT.2003.817466. Archived from the original (PDF) on 2008-10-02.

- Ethan D. Bloch (27 June 2011).
*A First Course in Geometric Topology and Differential Geometry*. Boston: Springer Science & Business Media. ISBN 978-0-8176-8122-7. OCLC 811474509. - Burke, William L. (1997).
*Applied differential geometry*. Cambridge University Press. ISBN 0-521-26929-6. OCLC 53249854. - do Carmo, Manfredo Perdigão (1976).
*Differential geometry of curves and surfaces*. Englewood Cliffs, N.J.: Prentice-Hall. ISBN 978-0-13-212589-5. OCLC 1529515. - Frankel, Theodore (2004).
*The geometry of physics : an introduction*(2nd ed.). New York: Cambridge University Press. ISBN 978-0-521-53927-2. OCLC 51855212. - Elsa Abbena; Simon Salamon; Alfred Gray (2017).
*Modern Differential Geometry of Curves and Surfaces with Mathematica*(3rd ed.). Boca Raton: Chapman and Hall/CRC. ISBN 978-1-351-99220-6. OCLC 1048919510. - Kreyszig, Erwin (1991).
*Differential Geometry*. New York: Dover Publications. ISBN 978-0-486-66721-8. OCLC 23384584. - Kühnel, Wolfgang (2002).
*Differential Geometry: Curves – Surfaces – Manifolds*(2nd ed.). Providence, R.I.: American Mathematical Society. ISBN 978-0-8218-3988-1. OCLC 61500086. - McCleary, John (1994).
*Geometry from a differentiable viewpoint*. Cambridge University Press. ISBN 0-521-13311-4. OCLC 915912917. - Spivak, Michael (1999).
*A Comprehensive Introduction to Differential Geometry (5 Volumes)*(3rd ed.). Publish or Perish. ISBN 0-914098-72-1. OCLC 179192286. - ter Haar Romeny, Bart M. (2003).
*Front-end vision and multi-scale image analysis : multi-scale computer vision theory and applications, written in Mathematica*. Dordrecht: Kluwer Academic. ISBN 978-1-4020-1507-6. OCLC 52806205.

- "Differential geometry",
*Encyclopedia of Mathematics*, EMS Press, 2001 [1994] - B. Conrad. Differential Geometry handouts, Stanford University
- Michael Murray's online differential geometry course, 1996 Archived 2013-08-01 at the Wayback Machine
- A Modern Course on Curves and Surfaces, Richard S Palais, 2003 Archived 2019-04-09 at the Wayback Machine
- Richard Palais's 3DXM Surfaces Gallery Archived 2019-04-09 at the Wayback Machine
- Balázs Csikós's Notes on Differential Geometry
- N. J. Hicks, Notes on Differential Geometry, Van Nostrand.
- MIT OpenCourseWare: Differential Geometry, Fall 2008

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.