Systems science

Last updated
Impression of systems thinking about society Systems thinking about the society.svg
Impression of systems thinking about society

Systems Science, also referred to as systems research, [1] or, simply, systems, [2] is a transdisciplinary [3] field that is concerned with understanding simple and complex systems in nature and society, for which leads to the advancements of formal, natural, social, and applied attributions throughout engineering, technology and science, itself.

To systems scientists, the world can be understood as a system of systems. [4] The field aims to develop transdisciplinary foundations that are applicable in a variety of areas, such as psychology, biology, medicine, communication, business, technology, computer science, engineering, and social sciences. [5]

Themes commonly stressed in system science are (a) holistic view, (b) interaction between a system and its embedding environment, and (c) complex (often subtle) trajectories of dynamic behavior that sometimes are stable (and thus reinforcing), while at various 'boundary conditions' can become wildly unstable (and thus destructive). Concerns about Earth-scale biosphere/geosphere dynamics is an example of the nature of problems to which systems science seeks to contribute meaningful insights.

Associated fields

The systems sciences are a broad array of fields. One way of conceiving of these is in three groups: fields that have developed systems ideas primarily through theory; those that have done so primarily through practical engagements with problem situations; and those that have applied ideas for other disciplines. [6]

Theoretical fields

Chaos and dynamical systems

Complexity

Control theory

Cybernetics

Information theory

General systems theory

Hierarchy Theory

Practical fields

Critical systems thinking

Operations research and management science

Soft systems methodology

The soft systems methodology was developed in England by academics at the University of Lancaster Systems Department through a ten-year action research programme. The main contributor is Peter Checkland (born 18 December 1930, in Birmingham, UK), a British management scientist and emeritus professor of systems at Lancaster University.

Systems analysis

Systems analysis branch of systems science that analyzes systems, the interactions within those systems, or interaction with its environment, [7] often prior to their automation as computer models. Systems analysis is closely associated with the RAND corporation.

Systemic design

Systemic design integrates methodologies from systems thinking with advanced design practices to address complex, multi-stakeholder situations.

Systems dynamics

System dynamics is an approach to understanding the behavior of complex systems over time. It offers "simulation technique for modeling business and social systems", [8] which deals with internal feedback loops and time delays that affect the behavior of the entire system. What makes using system dynamics different from other approaches to studying complex systems is the use of feedback loops and stocks and flows.

Systems engineering

Systems engineering (SE) is an interdisciplinary field of engineering, that focuses on the development and organization of complex systems. It is the "art and science of creating whole solutions to complex problems", [9] for example: signal processing systems, control systems and communication system, or other forms of high-level modelling and design in specific fields of engineering. Systems Science is foundational to the Embedded Software Development that is founded in the embedded requirements of Systems Engineering.

Applications in other disciplines

Earth system science

Systems biology

Systems chemistry

Systems ecology

Systems psychology

See also

Related Research Articles

Systems theory is the transdisciplinary study of systems, i.e. cohesive groups of interrelated, interdependent components that can be natural or artificial. Every system has causal boundaries, is influenced by its context, defined by its structure, function and role, and expressed through its relations with other systems. A system is "more than the sum of its parts" by expressing synergy or emergent behavior.

In the context of systems science and systems philosophy, systemics is an initiative to study systems. It is an attempt at developing logical, mathematical, engineering and philosophical paradigms and frameworks in which physical, technological, biological, social, cognitive and metaphysical systems can be studied and modeled.

Social simulation is a research field that applies computational methods to study issues in the social sciences. The issues explored include problems in computational law, psychology, organizational behavior, sociology, political science, economics, anthropology, geography, engineering, archaeology and linguistics.

System of systems is a collection of task-oriented or dedicated systems that pool their resources and capabilities together to create a new, more complex system which offers more functionality and performance than simply the sum of the constituent systems. Currently, systems of systems is a critical research discipline for which frames of reference, thought processes, quantitative analysis, tools, and design methods are incomplete. The methodology for defining, abstracting, modeling, and analyzing system of systems problems is typically referred to as system of systems engineering.

<span class="mw-page-title-main">Social complexity</span> Conceptual framework

In sociology, social complexity is a conceptual framework used in the analysis of society. In the sciences, contemporary definitions of complexity are found in systems theory, wherein the phenomenon being studied has many parts and many possible arrangements of the parts; simultaneously, what is complex and what is simple are relative and change in time.

<span class="mw-page-title-main">Computational sociology</span> Branch of the discipline of sociology

Computational sociology is a branch of sociology that uses computationally intensive methods to analyze and model social phenomena. Using computer simulations, artificial intelligence, complex statistical methods, and analytic approaches like social network analysis, computational sociology develops and tests theories of complex social processes through bottom-up modeling of social interactions.

Soft systems methodology (SSM) is an organised way of thinking that's applicable to problematic social situations and in the management of change by using action. It was developed in England by academics at the Lancaster Systems Department on the basis of a ten-year action research programme.

<span class="mw-page-title-main">Francis Heylighen</span> Belgian cyberneticist (born 1960)

Francis Paul Heylighen is a Belgian cyberneticist investigating the emergence and evolution of intelligent organization. He presently works as a research professor at the Vrije Universiteit Brussel, where he directs the transdisciplinary "Center Leo Apostel" and the research group on "Evolution, Complexity and Cognition". He is best known for his work on the Principia Cybernetica Project, his model of the Internet as a global brain, and his contributions to the theories of memetics and self-organization. He is also known, albeit to a lesser extent, for his work on gifted people and their problems.

Complexity theory and organizations, also called complexity strategy or complex adaptive organizations, is the use of the study of complexity systems in the field of strategic management and organizational studies. It draws from research in the natural sciences that examines uncertainty and non-linearity. Complexity theory emphasizes interactions and the accompanying feedback loops that constantly change systems. While it proposes that systems are unpredictable, they are also constrained by order-generating rules.

<span class="mw-page-title-main">System</span> Interrelated entities that form a whole

A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment, is described by its boundaries, structure and purpose and is expressed in its functioning. Systems are the subjects of study of systems theory and other systems sciences.

Principia Cybernetica is an international cooperation of scientists in the field of cybernetics and systems science, especially known for their website, Principia Cybernetica. They have dedicated their organization to what they call "a computer-supported evolutionary-systemic philosophy, in the context of the transdisciplinary academic fields of Systems Science and Cybernetics".

<span class="mw-page-title-main">Management cybernetics</span> Application of cybernetics to management and organizations

Management cybernetics is concerned with the application of cybernetics to management and organizations. "Management cybernetics" was first introduced by Stafford Beer in the late 1950s and introduces the various mechanisms of self-regulation applied by and to organizational settings, as seen through a cybernetics perspective. Beer developed the theory through a combination of practical applications and a series of influential books. The practical applications involved steel production, publishing and operations research in a large variety of different industries. Some consider that the full flowering of management cybernetics is represented in Beer's books. However, learning continues.

Gerard de Zeeuw is a Dutch scientist and Emeritus professor Mathematical modelling of complex social systems at the University of Amsterdam in the Netherlands. He is known for his work on the theory and practice of action research, particularly on the "Problems of increasing competence", "Second order organisational research" and "Three phases of science: A methodological exploration".

Critical systems thinking (CST) is a systems approach designed to aid decision-makers, and other stakeholders, improve complex problem situations that cross departmental and, often, organizational boundaries. CST sees systems thinking as essential to managing multidimensional 'messes' in which technical, economic, organizational, human, cultural and political elements interact. It is critical in a positive manner because it seeks to capitalize on the strengths of existing approaches while also calling attention to their limitations. CST seeks to allow systems approaches such as systems engineering, system dynamics, organizational cybernetics, soft systems methodology, critical systems heuristics, and others, to be used together, in a responsive and flexible way, to maximize the benefits they can bring.

<span class="mw-page-title-main">Cybernetics</span> Transdisciplinary field concerned with regulatory and purposive systems

Cybernetics is a field of systems theory that studies circular causal systems whose outputs are also inputs, such as feedback systems. It is concerned with the general principles of circular causal processes, including in ecological, technological, biological, cognitive and social systems and also in the context of practical activities such as designing, learning, and managing.

The IEEE Systems, Man, and Cybernetics Society is a professional society of the IEEE. It aims "to serve the interests of its members and the community at large by promoting the theory, practice, and interdisciplinary aspects of systems science and engineering, human-machine systems, and cybernetics".

<span class="mw-page-title-main">Problem structuring methods</span>

Problem structuring methods (PSMs) are a group of techniques used to model or to map the nature or structure of a situation or state of affairs that some people want to change. PSMs are usually used by a group of people in collaboration to create a consensus about, or at least to facilitate negotiations about, what needs to change. Some widely adopted PSMs include

References

  1. "IFSR".
  2. Ison, Ray. Systems Practice: How to Act: In situations of uncertainty and complexity in a climate-change world, 2nd ed, 2017. Springer, p. 33
  3. Hammond, Ross A.; Dubé, Laurette (2012). "A systems science perspective and transdisciplinary models for food and nutrition security". Proceedings of the National Academy of Sciences. 109 (31): 12356–12363. Bibcode:2012PNAS..10912356H. doi: 10.1073/pnas.0913003109 . PMC   3411994 . PMID   22826247.
  4. G. E. Mobus & M. C. Kalton, Principles of Systems Science, 2015, New York:Springer.
  5. Philip M'Pherson (1974, p. 229); as cited by: Hieronymi, Andreas (2013). "Understanding Systems Science: A Visual and Integrative Approach" (PDF). Systems Research and Behavioral Science. 30 (5): 580–595. doi:10.1002/sres.2215.. He defined systems science as "the ordered arrangement of knowledge acquired from the study of systems in the observable world, together with the application of this knowledge to the design of man-made systems".
  6. Peter Checkland. 1981. Systems Thinking, Systems Practice. Chichester: Wiley.
  7. Anthony Debons. "Command and Control: Technology and Social Impact" in: Advances in computers, Vol. 11. Franz L. Alt & Morris Rubinoff eds. (1971). p. 362
  8. Center for Complex Adaptive Agent Systems Simulation Argonne National Laboratory (2007) Managing Business Complexity : Discovering Strategic Solutions with Agent-Based Modeling and Simulation: Discovering Strategic Solutions with Agent-Based Modeling and Simulation. Oxford University Press. p. 55
  9. Derek K. Hitchins (2008) Systems Engineering: A 21st Century Systems Methodology. p. 100

Further reading