Doubling time

Last updated

The doubling time is the time it takes for a population to double in size/value. It is applied to population growth, inflation, resource extraction, consumption of goods, compound interest, the volume of malignant tumours, and many other things that tend to grow over time. When the relative growth rate (not the absolute growth rate) is constant, the quantity undergoes exponential growth and has a constant doubling time or period, which can be calculated directly from the growth rate.

Contents

This time can be calculated by dividing the natural logarithm of 2 by the exponent of growth, or approximated by dividing 70 by the percentage growth rate [1] (more roughly but roundly, dividing 72; see the rule of 72 for details and derivations of this formula).

The doubling time is a characteristic unit (a natural unit of scale) for the exponential growth equation, and its converse for exponential decay is the half-life.

As an example, Canada's net population growth was 2.7 percent in the year 2022, dividing 72 by 2.7 gives an approximate doubling time of about 27 years. Thus if that growth rate were to remain constant, Canada's population would double from its 2023 figure of about 39 million to about 78 million by 2050. [2]

History

The notion of doubling time dates to interest on loans in Babylonian mathematics. Clay tablets from circa 2000 BCE include the exercise "Given an interest rate of 1/60 per month (no compounding), come the doubling time." This yields an annual interest rate of 12/60 = 20%, and hence a doubling time of 100% growth/20% growth per year = 5 years. [3] [4] Further, repaying double the initial amount of a loan, after a fixed time, was common commercial practice of the period: a common Assyrian loan of 1900 BCE consisted of loaning 2 minas of gold, getting back 4 in five years, [3] and an Egyptian proverb of the time was "If wealth is placed where it bears interest, it comes back to you redoubled." [3] [5]

Examination

Examining the doubling time can give a more intuitive sense of the long-term impact of growth than simply viewing the percentage growth rate.

For a constant growth rate of r% within time t, the formula for the doubling time Td is given by

Some doubling times calculated with this formula are shown in this table.

Simple doubling time formula:

where

Doubling times Td given constant r% growth
r%Td
 0.1693.49
 0.2346.92
 0.3231.40
 0.4173.63
 0.5138.98
 0.6115.87
 0.799.36
 0.886.99
 0.977.36
 1.069.66
r%Td
 1.163.64
 1.258.11
 1.353.66
 1.449.86
 1.546.56
 1.643.67
 1.741.12
 1.838.85
 1.936.83
 2.035.00
r%Td
 2.133.35
 2.231.85
 2.330.48
 2.429.23
 2.528.07
 2.627.00
 2.726.02
 2.825.10
 2.924.25
 3.023.45
r%Td
 3.122.70
 3.222.01
 3.321.35
 3.420.73
 3.520.15
 3.619.60
 3.719.08
 3.818.59
 3.918.12
 4.017.67
r%Td
 4.117.25
 4.216.85
 4.316.46
 4.416.10
 4.515.75
 4.615.41
 4.715.09
 4.814.78
 4.914.49
 5.014.21
r%Td
 5.512.95
 6.011.90
 6.511.01
 7.010.24
 7.59.58
 8.09.01
 8.58.50
 9.08.04
 9.57.64
10.07.27
r%Td
11.06.64
12.06.12
13.05.67
14.05.29
15.04.96
16.04.67
17.04.41
18.04.19
19.03.98
20.03.80
r%Td
21.03.64
22.03.49
23.03.35
24.03.22
25.03.11
26.03.00
27.02.90
28.02.81
29.02.72
30.02.64
r%Td
31.02.57
32.02.50
33.02.43
34.02.37
35.02.31
36.02.25
37.02.20
38.02.15
39.02.10
40.02.06
r%Td
41.02.02
42.01.98
43.01.94
44.01.90
45.01.87
46.01.83
47.01.80
48.01.77
49.01.74
50.01.71

For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%).

When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all previous periods. This enabled U.S. President Jimmy Carter to note in a speech in 1977 that in each of the previous two decades the world had used more oil than in all of previous history (The roughly exponential growth in world oil consumption between 1950 and 1970 had a doubling period of under a decade).

Given two measurements of a growing quantity, q1 at time t1 and q2 at time t2, and assuming a constant growth rate, the doubling time can be calculated as

Where it is useful

Constant relative growth rate means simply that the increase per unit time is proportional to the current quantity, i.e. the addition rate per unit amount is constant. It naturally occurs when the existing material generates or is the main determinant of new material. For example, population growth in virgin territory, or fractional-reserve banking creating inflation. With unvarying growth the doubling calculation may be applied for many doubling periods or generations.[ citation needed ]

In practice eventually other constraints become important, exponential growth stops and the doubling time changes or becomes inapplicable. Limited food supply or other resources at high population densities will reduce growth, or needing a wheel-barrow full of notes to buy a loaf of bread will reduce the acceptance of paper money. While using doubling times is convenient and simple, we should not apply the idea without considering factors which may affect future growth. In the 1950s Canada's population growth rate was over 3% per year, so extrapolating the current growth rate of 0.9% for many decades (implied by the doubling time) is unjustified unless we have examined the underlying causes of the growth and determined they will not be changing significantly over that period.[ citation needed ]

The equivalent concept to doubling time for a material undergoing a constant negative relative growth rate or exponential decay is the half-life.

The equivalent concept in base-e is e-folding.

Doubling time vs half life.svg
Graphs comparing doubling times and half lives of exponential growths (bold lines) and decay (faint lines), and their 70/t and 72/t approximations. In the SVG version, hover over a graph to highlight it and its complement.

Cell culture doubling time

Cell doubling time can be calculated in the following way using growth rate (amount of doubling in one unit of time)

Growth rate:

or

where

Doubling time:

The following is the known doubling time for the following cells:

Cell typesSourceDoubling time
Mesenchymal Stem CellMouse21–23 hours [6]
Cardiac/heart stem cellHuman29 ±10 hours [7]

See also

Related Research Articles

<span class="mw-page-title-main">Exponential function</span> Mathematical function, denoted exp(x) or e^x

The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation, but modern definitions allow it to be rigorously extended to all real arguments, including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to opine that the exponential function is "the most important function in mathematics".

<span class="mw-page-title-main">Half-life</span> Time for exponential decay to remove half of a quantity

Half-life is the time required for a quantity to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive. The term is also used more generally to characterize any type of exponential decay. For example, the medical sciences refer to the biological half-life of drugs and other chemicals in the human body. The converse of half-life is doubling time.

In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and reverse reactions. This equation has a vast and important application in determining the rate of chemical reactions and for calculation of energy of activation. Arrhenius provided a physical justification and interpretation for the formula. Currently, it is best seen as an empirical relationship. It can be used to model the temperature variation of diffusion coefficients, population of crystal vacancies, creep rates, and many other thermally-induced processes/reactions. The Eyring equation, developed in 1935, also expresses the relationship between rate and energy.

<span class="mw-page-title-main">Logistic function</span> S-shaped curve

A logistic function or logistic curve is a common S-shaped curve with the equation

<span class="mw-page-title-main">Time value of money</span> Conjecture that there is greater benefit to receiving a sum of money now rather than later

The time value of money is the widely accepted conjecture that there is greater benefit to receiving a sum of money now rather than an identical sum later. It may be seen as an implication of the later-developed concept of time preference.

<span class="mw-page-title-main">Exponential growth</span> Growth of quantities at rate proportional to the current amount

Exponential growth is a process that increases quantity over time. It occurs when the instantaneous rate of change of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent.

<span class="mw-page-title-main">Exponential decay</span> Decrease in value at a rate proportional to the current value

A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation, where N is the quantity and λ (lambda) is a positive rate called the exponential decay constant, disintegration constant, rate constant, or transformation constant:

In finance, the rule of 72, the rule of 70 and the rule of 69.3 are methods for estimating an investment's doubling time. The rule number is divided by the interest percentage per period to obtain the approximate number of periods required for doubling. Although scientific calculators and spreadsheet programs have functions to find the accurate doubling time, the rules are useful for mental calculations and when only a basic calculator is available.

<span class="mw-page-title-main">Compound interest</span> Compounding sum paid for the use of money

Compound interest is the addition of interest to the principal sum of a loan or deposit, or in other words, interest on principal plus interest. It is the result of reinvesting interest, or adding it to the loaned capital rather than paying it out, or requiring payment from borrower, so that interest in the next period is then earned on the principal sum plus previously accumulated interest. Compound interest is standard in finance and economics.

Population dynamics is the type of mathematics used to model and study the size and age composition of populations as dynamical systems.

In the context of radioactivity, activity or total activity (symbol A) is a physical quantity defined as the number of radioactive transformations per second that occur in a particular radionuclide. The unit of activity is the becquerel (symbol Bq), which is defined equivalent to reciprocal seconds (symbol s-1). The older, non-SI unit of activity is the curie (Ci), which is 3.7×1010 radioactive decay per second. Another unit of activity is the rutherford, which is defined as 1×106 radioactive decay per second.

Future value is the value of an asset at a specific date. It measures the nominal future sum of money that a given sum of money is "worth" at a specified time in the future assuming a certain interest rate, or more generally, rate of return; it is the present value multiplied by the accumulation function. The value does not include corrections for inflation or other factors that affect the true value of money in the future. This is used in time value of money calculations.

In economics, nominal value refers to value measured in terms of absolute money amounts, whereas real value is considered and measured against the actual goods or services for which it can be exchanged at a given time. For example, if one is offered a salary of $40,000, in that year, the real and nominal values are both $40,000. The following year, any inflation means that although the nominal value remains $40,000, because prices have risen, the salary will buy fewer goods and services, and thus its real value has decreased in accordance with inflation. On the other hand, ownership of an asset that holds its value, such as a diamond may increase in nominal price increase from year to year, but its real value, i.e. its value in relation to other goods and services for which it can be exchanged, or its purchasing power, is consistent over time, because inflation has affected both its nominal value and other goods' nominal value. In spite of changes in the price, it can be sold and an equivalent amount of emeralds can be purchased, because the emerald's prices will have increased with inflation as well.

<span class="mw-page-title-main">Basic reproduction number</span> Metric in epidemiology

In epidemiology, the basic reproduction number, or basic reproductive number, denoted , of an infection is the expected number of cases directly generated by one case in a population where all individuals are susceptible to infection. The definition assumes that no other individuals are infected or immunized. Some definitions, such as that of the Australian Department of Health, add the absence of "any deliberate intervention in disease transmission". The basic reproduction number is not necessarily the same as the effective reproduction number , which is the number of cases generated in the current state of a population, which does not have to be the uninfected state. is a dimensionless number and not a time rate, which would have units of time−1, or units of time like doubling time.

Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation. Examples include viscous drag in mechanical systems, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes. Not to be confused with friction, which is a dissipative force acting on a system. Friction can cause or be a factor of damping.

In science, e-folding is the time interval in which an exponentially growing quantity increases by a factor of e; it is the base-e analog of doubling time. This term is often used in many areas of science, such as in atmospheric chemistry, medicine and theoretical physics, especially when cosmic inflation is investigated. Physicists and chemists often talk about the e-folding time scale that is determined by the proper time in which the length of a patch of space or spacetime increases by the factor e mentioned above.

The Gompertz curve or Gompertz function is a type of mathematical model for a time series, named after Benjamin Gompertz (1779–1865). It is a sigmoid function which describes growth as being slowest at the start and end of a given time period. The right-side or future value asymptote of the function is approached much more gradually by the curve than the left-side or lower valued asymptote. This is in contrast to the simple logistic function in which both asymptotes are approached by the curve symmetrically. It is a special case of the generalised logistic function. The function was originally designed to describe human mortality, but since has been modified to be applied in biology, with regard to detailing populations.

<span class="mw-page-title-main">Continuous-repayment mortgage</span>

Analogous to continuous compounding, a continuous annuity is an ordinary annuity in which the payment interval is narrowed indefinitely. A (theoretical) continuous repayment mortgage is a mortgage loan paid by means of a continuous annuity.

Relative growth rate (RGR) is growth rate relative to size - that is, a rate of growth per unit time, as a proportion of its size at that moment in time. It is also called the exponential growth rate, or the continuous growth rate.

Plant growth analysis refers to a set of concepts and equations by which changes in size of plants over time can be summarised and dissected in component variables. It is often applied in the analysis of growth of individual plants, but can also be used in a situation where crop growth is followed over time.

References

  1. Donella Meadows, Thinking in Systems: A Primer, Chelsea Green Publishing, 2008, page 33 (box "Hint on reinforcing feedback loops and doubling time").
  2. https://www150.statcan.gc.ca/n1/daily-quotidien/230322/dq230322f-eng.htm
  3. 1 2 3 Why the “Miracle of Compound Interest” leads to Financial Crises, by Michael Hudson
  4. Have we caught your interest? by John H. Webb
  5. Miriam Lichtheim, Ancient Egyptian Literature, II:135.
  6. "Life Technologies" (PDF).
  7. "Human cardiac stem cells".{{cite journal}}: Cite journal requires |journal= (help)