Rule of 72

Last updated

In finance, the rule of 72, the rule of 70 [1] and the rule of 69.3 are methods for estimating an investment's doubling time. The rule number (e.g., 72) is divided by the interest percentage per period (usually years) to obtain the approximate number of periods required for doubling. Although scientific calculators and spreadsheet programs have functions to find the accurate doubling time, the rules are useful for mental calculations and when only a basic calculator is available. [2]

Contents

These rules apply to exponential growth and are therefore used for compound interest as opposed to simple interest calculations. They can also be used for decay to obtain a halving time. The choice of number is mostly a matter of preference: 69 is more accurate for continuous compounding, while 72 works well in common interest situations and is more easily divisible.

There are a number of variations to the rules that improve accuracy. For periodic compounding, the exact doubling time for an interest rate of r percent per period is

,

where t is the number of periods required. The formula above can be used for more than calculating the doubling time. If one wants to know the tripling time, for example, replace the constant 2 in the numerator with 3. As another example, if one wants to know the number of periods it takes for the initial value to rise by 50%, replace the constant 2 with 1.5.

Using the rule to estimate compounding periods

To estimate the number of periods required to double an original investment, divide the most convenient "rule-quantity" by the expected growth rate, expressed as a percentage.

Similarly, to determine the time it takes for the value of money to halve at a given rate, divide the rule quantity by that rate.

Choice of rule

The value 72 is a convenient choice of numerator, since it has many small divisors: 1, 2, 3, 4, 6, 8, 9, and 12. It provides a good approximation for annual compounding, and for compounding at typical rates (from 6% to 10%); the approximations are less accurate at higher interest rates.

For continuous compounding, 69 gives accurate results for any rate, since ln(2) is about 69.3%; see derivation below. Since daily compounding is close enough to continuous compounding, for most purposes 69, 69.3 or 70 are better than 72 for daily compounding. For lower annual rates than those above, 69.3 would also be more accurate than 72. [3] For higher annual rates, 78 is more accurate.

RateActual YearsRate × Actual YearsRule of 72Rule of 70Rule of 69.3
0.25 %277.60569.401288.000280.000277.200
0.5 %138.97669.488144.000140.000138.600
1 %69.66169.66172.00070.00069.300
2 %35.00370.00636.00035.00034.650
3 %23.45070.34924.00023.33323.100
4 %17.67370.69218.00017.50017.325
5 %14.20771.03314.40014.00013.860
6 %11.89671.37412.00011.66711.550
7 %10.24571.71310.28610.0009.900
8 %9.00672.0529.0008.7508.663
9 %8.04372.3898.0007.7787.700
10 %7.27372.7257.2007.0006.930
11 %6.64273.0616.5456.3646.300
12 %6.11673.3956.0005.8335.775
15 %4.95974.3924.8004.6674.620
18 %4.18875.3814.0003.8893.850
20 %3.80276.0363.6003.5003.465
25 %3.10677.6572.8802.8002.772
30 %2.64279.2582.4002.3332.310
40 %2.06082.4021.8001.7501.733
50 %1.71085.4761.4401.4001.386

Note: The most accurate value on each row is in bold.

Graphs comparing doubling times and half lives of exponential growths (bold lines) and decay (faint lines), and their 70/t and 72/t approximations. In the SVG version, hover over a graph to highlight it and its complement. Doubling time vs half life.svg
Graphs comparing doubling times and half lives of exponential growths (bold lines) and decay (faint lines), and their 70/t and 72/t approximations. In the SVG version, hover over a graph to highlight it and its complement.

History

An early reference to the rule is in the Summa de arithmetica (Venice, 1494. Fol. 181, n. 44) of Luca Pacioli (1445–1514). He presents the rule in a discussion regarding the estimation of the doubling time of an investment, but does not derive or explain the rule, and it is thus assumed that the rule predates Pacioli by some time.

A voler sapere ogni quantità a tanto per 100 l'anno, in quanti anni sarà tornata doppia tra utile e capitale, tieni per regola 72, a mente, il quale sempre partirai per l'interesse, e quello che ne viene, in tanti anni sarà raddoppiato. Esempio: Quando l'interesse è a 6 per 100 l'anno, dico che si parta 72 per 6; ne vien 12, e in 12 anni sarà raddoppiato il capitale. (emphasis added).

Roughly translated:

In wanting to know of any capital, at a given yearly percentage, in how many years it will double adding the interest to the capital, keep as a rule [the number] 72 in mind, which you will always divide by the interest, and what results, in that many years it will be doubled. Example: When the interest is 6 percent per year, I say that one divides 72 by 6; 12 results, and in 12 years the capital will be doubled.

Derivation

Periodic compounding

For periodic compounding, future value is given by:

where is the present value, is the number of time periods, and stands for the interest rate per time period.

The future value is double the present value when:

which is the following condition:

This equation is easily solved for :

A simple rearrangement shows

.

If is small, then approximately equals (this is the first term in the Taylor series). That is, the latter factor grows slowly when is close to zero.

Call this latter factor . The function is shown to be accurate in the approximation of for a small, positive interest rate when (see derivation below). , and we therefore approximate time as:

.

This approximation increases in accuracy as the compounding of interest becomes continuous (see derivation below).

In order to derive a more precise adjustment, it is noted that is more closely approximated by (using the second term in the Taylor series). can then be further simplified by Taylor approximations [4] :

.

Replacing the in on the third line with 7.79 gives 72 on the numerator. This shows that the rule of 72 is most accurate for periodically compounded interests around 8 %. Similarly, replacing the in on the third line with 2.02 gives 70 on the numerator, showing the rule of 70 is most accurate for periodically compounded interests around 2 %.

As a sophisticated but elegant mathematical method to achieve a more accurate fit, the function is developed in a Laurent series at the point [5] . With the first two terms one obtains:

 or rounded
.

Continuous compounding

In the case of theoretical continuous compounding, the derivation is simpler and yields to a more accurate rule:

See also

Related Research Articles

<span class="mw-page-title-main">Natural logarithm</span> Logarithm to the base of the mathematical constant e

The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

<span class="mw-page-title-main">Taylor series</span> Mathematical approximation of a function

In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th century.

<span class="mw-page-title-main">Birthday problem</span> Probability of shared birthdays

In probability theory, the birthday problem asks for the probability that, in a set of n randomly chosen people, at least two will share the same birthday. The birthday paradox refers to the counterintuitive fact that only 23 people are needed for that probability to exceed 50%.

In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions:

<span class="mw-page-title-main">Stirling's approximation</span> Approximation for factorials

In mathematics, Stirling's approximation is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.

<span class="mw-page-title-main">Error function</span> Sigmoid shape special function

In mathematics, the error function, often denoted by erf, is a function defined as:

<span class="mw-page-title-main">Exponential growth</span> Growth of quantities at rate proportional to the current amount

Exponential growth occurs when a quantity grows at a rate directly proportional to its present size. For example, when it is 3 times as big as it is now, it will be growing 3 times as fast as it is now.

<span class="mw-page-title-main">Square root of 2</span> Unique positive real number which when multiplied by itself gives 2

The square root of 2 is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

<span class="mw-page-title-main">Compound interest</span> Compounding sum paid for the use of money

Compound interest is interest accumulated from a principal sum and previously accumulated interest. It is the result of reinvesting or retaining interest that would otherwise be paid out, or of the accumulation of debts from a borrower.

In finance, the duration of a financial asset that consists of fixed cash flows, such as a bond, is the weighted average of the times until those fixed cash flows are received. When the price of an asset is considered as a function of yield, duration also measures the price sensitivity to yield, the rate of change of price with respect to yield, or the percentage change in price for a parallel shift in yields.

<span class="mw-page-title-main">Fraction</span> Ratio of two numbers

A fraction represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A common, vulgar, or simple fraction consists of an integer numerator, displayed above a line, and a non-zero integer denominator, displayed below that line. If these integers are positive, then the numerator represents a number of equal parts, and the denominator indicates how many of those parts make up a unit or a whole. For example, in the fraction 3/4, the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates 3/4 of a cake.

Methods of computing square roots are algorithms for approximating the non-negative square root of a positive real number . Since all square roots of natural numbers, other than of perfect squares, are irrational, square roots can usually only be computed to some finite precision: these methods typically construct a series of increasingly accurate approximations.

In finance, return is a profit on an investment. It comprises any change in value of the investment, and/or cash flows which the investor receives from that investment over a specified time period, such as interest payments, coupons, cash dividends and stock dividends. It may be measured either in absolute terms or as a percentage of the amount invested. The latter is also called the holding period return.

Return rate is a corporate finance and accounting tool which calculates the gain and loss of investment over a certain period of time.

In electronics, diode modelling refers to the mathematical models used to approximate the actual behaviour of real diodes to enable calculations and circuit analysis. A diode's I-V curve is nonlinear.

The gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general. Other fractional arguments can be approximated through efficient infinite products, infinite series, and recurrence relations.

Approximations of <span class="texhtml mvar" style="font-style:italic;">π</span> Varying methods used to calculate pi

Approximations for the mathematical constant pi in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century.

The doubling time is the time it takes for a population to double in size/value. It is applied to population growth, inflation, resource extraction, consumption of goods, compound interest, the volume of malignant tumours, and many other things that tend to grow over time. When the relative growth rate is constant, the quantity undergoes exponential growth and has a constant doubling time or period, which can be calculated directly from the growth rate.

<span class="mw-page-title-main">Continuous-repayment mortgage</span>

Analogous to continuous compounding, a continuous annuity is an ordinary annuity in which the payment interval is narrowed indefinitely. A (theoretical) continuous repayment mortgage is a mortgage loan paid by means of a continuous annuity.

References

  1. 1 2 Donella Meadows, Thinking in Systems: A Primer, Chelsea Green Publishing, 2008, page 33 (box "Hint on reinforcing feedback loops and doubling time").
  2. Slavin, Steve (1989). All the Math You'll Ever Need . John Wiley & Sons. pp.  153–154. ISBN   0-471-50636-2.
  3. Kalid Azad Demystifying the Natural Logarithm (ln) from BetterExplained
  4. "Taylor series of 1 / (1 - r/200)". WolframAlpha. Retrieved January 3, 2025.
  5. "Laurent series of ln(2) / ln(1 + r/100)". WolframAlpha. Retrieved January 2, 2025.

Sources