A spreadsheet is a computer application for computation, organization, analysis and storage of data in tabular form. [1] [2] [3] Spreadsheets were developed as computerized analogs of paper accounting worksheets. [4] The program operates on data entered in cells of a table. Each cell may contain either numeric or text data, or the results of formulas that automatically calculate and display a value based on the contents of other cells. The term spreadsheet may also refer to one such electronic document. [5] [6] [7]
Spreadsheet users can adjust any stored value and observe the effects on calculated values. This makes the spreadsheet useful for "what-if" analysis since many cases can be rapidly investigated without manual recalculation. Modern spreadsheet software can have multiple interacting sheets and can display data either as text and numerals or in graphical form. [8]
Besides performing basic arithmetic and mathematical functions, modern spreadsheets provide built-in functions for common financial accountancy and statistical operations. Such calculations as net present value or standard deviation can be applied to tabular data with a pre-programmed function in a formula. Spreadsheet programs also provide conditional expressions, functions to convert between text and numbers, and functions that operate on strings of text.
Spreadsheets have replaced paper-based systems throughout the business world. Although they were first developed for accounting or bookkeeping tasks, they now are used extensively in any context where tabular lists are built, sorted, and shared. [9]
LANPAR, available in 1969, [10] was the first electronic spreadsheet on mainframe and time sharing computers. LANPAR was an acronym: LANguage for Programming Arrays at Random. [10] VisiCalc (1979) was the first electronic spreadsheet on a microcomputer, [11] and it helped turn the Apple II into a popular and widely used personal computer. Lotus 1-2-3 was the leading spreadsheet when DOS was the dominant operating system. [12] Microsoft Excel now has the largest market share on the Windows and Macintosh platforms. [13] [14] [15] A spreadsheet program is a standard feature of an office productivity suite. In 2006 Google launched a beta release spreadsheet web application, this is currently known as Google Sheets and one of the applications provided in Google Drive. [16]
A spreadsheet consists of a table of cells arranged into rows and columns and referred to by the X and Y locations. X locations, the columns, are normally represented by letters, "A," "B," "C," etc., while rows are normally represented by numbers, 1, 2, 3, etc. A single cell can be referred to by addressing its row and column, "C10". This electronic concept of cell references was first introduced in LANPAR (Language for Programming Arrays at Random) (co-invented by Rene Pardo and Remy Landau) and a variant used in VisiCalc and known as "A1 notation". Additionally, spreadsheets have the concept of a range, a group of cells, normally contiguous. For instance, one can refer to the first ten cells in the first column with the range "A1:A10". LANPAR innovated forward referencing/natural order calculation which didn't re-appear until Lotus 123 and Microsoft's MultiPlan Version 2.
In modern spreadsheet applications, several spreadsheets, often known as worksheets or simply sheets, are gathered together to form a workbook. A workbook is physically represented by a file containing all the data for the book, the sheets, and the cells with the sheets. Worksheets are normally represented by tabs that flip between pages, each one containing one of the sheets, although Numbers changes this model significantly. Cells in a multi-sheet book add the sheet name to their reference, for instance, "Sheet 1!C10". Some systems extend this syntax to allow cell references to different workbooks.
Users interact with sheets primarily through the cells. A given cell can hold data by simply entering it in, or a formula, which is normally created by preceding the text with an equals sign. Data might include the string of text hello world
, the number 5
or the date 10-Sep-97
. A formula would begin with the equals sign, =5*3
, but this would normally be invisible because the display shows the result of the calculation, 15
in this case, not the formula itself. This may lead to confusion in some cases.
The key feature of spreadsheets is the ability for a formula to refer to the contents of other cells, which may, in turn, be the result of a formula. To make such a formula, one replaces a number with a cell reference. For instance, the formula =5*C10
would produce the result of multiplying the value in cell C10 by the number 5. If C10 holds the value 3
the result will be 15
. But C10 might also hold its formula referring to other cells, and so on.
The ability to chain formulas together is what gives a spreadsheet its power. Many problems can be broken down into a series of individual mathematical steps, and these can be assigned to individual formulas in cells. Some of these formulas can apply to ranges as well, like the SUM
function that adds up all the numbers within a range.
Spreadsheets share many principles and traits of databases, but spreadsheets and databases are not the same things. A spreadsheet is essentially just one table, whereas a database is a collection of many tables with machine-readable semantic relationships. While it is true that a workbook that contains three sheets is indeed a file containing multiple tables that can interact with each other, it lacks the relational structure of a database. Spreadsheets and databases are interoperable—sheets can be imported into databases to become tables within them, and database queries can be exported into spreadsheets for further analysis.
A spreadsheet program is one of the main components of an office productivity suite, which usually also contains a word processor, a presentation program, and a database management system. Programs within a suite use similar commands for similar functions. Usually, sharing data between the components is easier than with a non-integrated collection of functionally equivalent programs. This was particularly an advantage at a time when many personal computer systems used text-mode displays and commands instead of a graphical user interface.
Humans have organized data into tables, that is, grids of columns and rows, since ancient times. The Babylonians used clay tablets to store data as far back as 1800 BCE. [17] Other examples can be found in book-keeping ledgers and astronomical records. [18]
Since at least 1906 the term "spread sheet" has been used in accounting to mean a grid of columns and rows in a ledger. [19] [20] And prior to the rise of computerized spreadsheets, "spread" referred to a newspaper or magazine item (text or graphics) that covers two facing pages, extending across the centerfold and treating the two pages as one large page. [21] The compound word 'spread-sheet' came to mean the format used to present book-keeping ledgers—with columns for categories of expenditures across the top, invoices listed down the left margin, and the amount of each payment in the cell where its row and column intersect—which were, traditionally, a "spread" across facing pages of a bound ledger (book for keeping accounting records) or on oversized sheets of paper (termed 'analysis paper') ruled into rows and columns in that format and approximately twice as wide as ordinary paper. [22] [ failed verification ]
A batch "spreadsheet" is indistinguishable from a batch compiler with added input data, producing an output report, i.e., a 4GL or conventional, non-interactive, batch computer program. However, this concept of an electronic spreadsheet was outlined in the 1961 paper "Budgeting Models and System Simulation" by Richard Mattessich. [23] The subsequent work by Mattessich (1964a, Chpt. 9, Accounting and Analytical Methods) and its companion volume, Mattessich (1964b, Simulation of the Firm through a Budget Computer Program) applied computerized spreadsheets to accounting and budgeting systems (on mainframe computers programmed in FORTRAN IV). These batch Spreadsheets dealt primarily with the addition or subtraction of entire columns or rows (of input variables), rather than individual cells.
In 1962, this concept of the spreadsheet, called BCL for Business Computer Language, was implemented on an IBM 1130 [ dubious – discuss ] and in 1963 was ported to an IBM 7040 by R. Brian Walsh at Marquette University, Wisconsin. This program was written in Fortran. Primitive timesharing was available on those machines. In 1968 BCL was ported by Walsh to the IBM 360/67 timesharing machine at Washington State University. It was used to assist in the teaching of finance to business students. Students were able to take information prepared by the professor and manipulate it to represent it and show ratios etc. In 1964, a book entitled Business Computer Language was written by Kimball, Stoffells and Walsh. Both the book and program were copyrighted in 1966 and years later that copyright was renewed. [24]
Applied Data Resources had a FORTRAN preprocessor called Empires.
In the late 1960s, Xerox used BCL to develop a more sophisticated version for their timesharing system.
A key invention in the development of electronic spreadsheets was made by Rene K. Pardo and Remy Landau, who filed in 1970 U.S. patent 4,398,249 on a spreadsheet automatic natural order calculation algorithm. While the patent was initially rejected by the patent office as being a purely mathematical invention, following 12 years of appeals, Pardo and Landau won a landmark court case at the Predecessor Court of the Federal Circuit (CCPA), overturning the Patent Office in 1983 — establishing that "something does not cease to become patentable merely because the point of novelty is in an algorithm." However, in 1995 a federal district court ruled the patent unenforceable due to inequitable conduct by the inventors during the application process. [25] The United States Court of Appeals for the Federal Circuit upheld that decision in 1996. [26]
The actual software was called LANPAR — LANguage for Programming Arrays at Random. [note 1] This was conceived and entirely developed in the summer of 1969, following Pardo and Landau's recent graduation from Harvard University. Co-inventor Rene Pardo recalls that he felt that one manager at Bell Canada should not have to depend on programmers to program and modify budgeting forms, and he thought of letting users type out forms in any order and having an electronic computer calculate results in the right order ("Forward Referencing/Natural Order Calculation"). Pardo and Landau developed and implemented the software in 1969. [27]
LANPAR was used by Bell Canada, AT&T, and the 18 operating telephone companies nationwide for their local and national budgeting operations. LANPAR was also used by General Motors. Its uniqueness was Pardo's co-invention incorporating forward referencing/natural order calculation (one of the first "non-procedural" computer languages) [28] as opposed to left-to-right, top to bottom sequence for calculating the results in each cell that was used by VisiCalc, SuperCalc, and the first version of MultiPlan. Without forward referencing/natural order calculation, the user had to refresh the spreadsheet until the values in all cells remained unchanged. Once the cell values stayed constant, the user was assured that there were no remaining forward references within the spreadsheet.
In 1968, three former employees from the General Electric computer company headquartered in Phoenix, Arizona set out to start their own software development house. A. Leroy Ellison, Harry N. Cantrell, and Russell E. Edwards found themselves doing a large number of calculations when making tables for the business plans that they were presenting to venture capitalists. They decided to save themselves a lot of effort and wrote a computer program that produced their tables for them. This program, originally conceived as a simple utility for their personal use, would turn out to be the first software product offered by the company that would become known as Capex Corporation. "AutoPlan" ran on GE's Time-sharing service; afterward, a version that ran on IBM mainframes was introduced under the name AutoTab. (National CSS offered a similar product, CSSTAB, which had a moderate timesharing user base by the early 1970s. A major application was opinion research tabulation.)
AutoPlan/AutoTab was not a WYSIWYG interactive spreadsheet program, it was a simple scripting language for spreadsheets. The user defined the names and labels for the rows and columns, then the formulas that defined each row or column. In 1975, Autotab-II was advertised as extending the original to a maximum of "1,500 rows and columns, combined in any proportion the user requires..." [29]
GE Information Services, which operated the time-sharing service, also launched its own spreadsheet system, Financial Analysis Language (FAL), circa 1974. It was later supplemented by an additional spreadsheet language, TABOL, [30] [31] which was developed by an independent author, Oliver Vellacott in the UK. Both FAL and TABOL were integrated with GEIS's database system, DMS.
The IBM Financial Planning and Control System was developed in 1976, by Brian Ingham at IBM Canada. It was implemented by IBM in at least 30 countries. It ran on an IBM mainframe and was the first application for financial planning developed with APL that completely hid the programming language from the end-user. Through IBM's VM operating system, it was among the first programs to auto-update each copy of the application as new versions were released. Users could specify simple mathematical relationships between rows and between columns. Compared to any contemporary alternatives, it could support very large spreadsheets. It loaded actual financial planning data drawn from the legacy batch system into each user's spreadsheet monthly. It was designed to optimize the power of APL through object kernels, increasing program efficiency by as much as 50 fold over traditional programming approaches.
An example of an early "industrial weight" spreadsheet was APLDOT, developed in 1976 at the United States Railway Association on an IBM 360/91, running at The Johns Hopkins University Applied Physics Laboratory in Laurel, MD. [32] The application was used successfully for many years in developing such applications as financial and costing models for the US Congress and for Conrail. APLDOT was dubbed a "spreadsheet" because financial analysts and strategic planners used it to solve the same problems they addressed with paper spreadsheet pads.
The concept of spreadsheets became widely known due to VisiCalc, developed for the Apple II in 1979 by VisiCorp staff Dan Bricklin and Bob Frankston. Significantly, it also turned the personal computer from a hobby for computer enthusiasts into a business tool.
VisiCalc was the first spreadsheet that combined many of the essential features of modern spreadsheet applications, such as a WYSIWYG interactive user interface, automatic recalculation, status and formula lines, range copying with relative and absolute references, and formula building by selecting referenced cells. Unaware of LANPAR at the time, PC World magazine called VisiCalc the first electronic spreadsheet. [33]
Bricklin has spoken of watching his university professor create a table of calculation results on a blackboard. When the professor found an error, he had to tediously erase and rewrite several sequential entries in the table, triggering Bricklin to think that he could replicate the process on a computer, using the blackboard as the model to view results of underlying formulas. His idea became VisiCalc.
VisiCalc for the Apple II went on to become the first killer application, [34] [35] a program so compelling, people would buy a particular computer just to use it. It was ported to other computers, including CP/M machines, Atari 8-bit computers, and the Commodore PET, but VisiCalc remains best known as an Apple II program.
SuperCalc was a spreadsheet application published by Sorcim in 1980, and originally bundled (along with WordStar) as part of the CP/M software package included with the Osborne 1 portable computer. It quickly became the de facto standard spreadsheet for CP/M.
The introduction of Lotus 1-2-3 in November 1982 accelerated the acceptance of the IBM Personal Computer. It was written especially for IBM PC DOS and had improvements in speed and graphics compared to VisiCalc on the Apple II, this helped it grow in popularity. [36] Lotus 1-2-3 was the leading spreadsheet for several years.
Microsoft released the first version of Excel for the Apple Macintosh on September 30, 1985, and then ported [37] it to Windows, with the first version being numbered 2.05 (to synchronize with the Macintosh version 2.2) and released in November 1987. Microsoft's Windows 3.x platforms of the early 1990s made it possible for their Excel spreadsheet application to take market share from Lotus. By the time Lotus responded with usable Windows products, Microsoft had begun to assemble their Office suite. By 1995, Excel was the market leader, edging out Lotus 1-2-3, [22] and in 2013, IBM discontinued Lotus 1-2-3 altogether. [38]
In 2006 Google launched their beta release Google Sheets, a web based spreadsheet application that can be accessed by multiple users from any device type using a compatible web browser, it can be used online and offline (with or without internet connectivity). Google Sheets originated from a web-based spreadsheet application XL2Web developed by 2Web Technologies, combined with DocVerse which enabled multiple-user online collaboration of Office documents.
In 2016 Collabora Online Calc was launched, notable in that the web based spreadsheet could be hosted and integrated into any environment without dependency on a 3rd party for authentication or maintenance. Collabora Online runs LibreOffice kit at its core, which grew from StarOffice that was launched 39 years ago in 1985.
Notable current spreadsheet software:
Discontinued spreadsheet software:
Several companies have attempted to break into the spreadsheet market with programs based on very different paradigms. Lotus introduced what is likely the most successful example, Lotus Improv, which saw some commercial success, notably in the financial world where its powerful data mining capabilities remain well respected to this day.
Spreadsheet 2000 attempted to dramatically simplify formula construction, but was generally not successful.
The main concepts are those of a grid of cells, called a sheet, with either raw data, called values, or formulas in the cells. Formulas say how to mechanically compute new values from existing values. Values are general numbers, but can also be pure text, dates, months, etc. Extensions of these concepts include logical spreadsheets. Various tools for programming sheets, visualizing data, remotely connecting sheets, displaying cells' dependencies, etc. are commonly provided.
A "cell" can be thought of as a box for holding data. A single cell is usually referenced by its column and row (C2 would represent the cell containing the value 30 in the example table below). Usually rows, representing the dependent variables, are referenced in decimal notation starting from 1, while columns representing the independent variables use 26-adic bijective numeration using the letters A-Z as numerals. Its physical size can usually be tailored to its content by dragging its height or width at box intersections (or for entire columns or rows by dragging the column- or row-headers).
A | B | C | D | |
---|---|---|---|---|
01 | Sales | 100000 | 30000 | 70000 |
02 | Purchases | 25490 | 30 | 200 |
An array of cells is called a sheet or worksheet. It is analogous to an array of variables in a conventional computer program (although certain unchanging values, once entered, could be considered, by the same analogy, constants). In most implementations, many worksheets may be located within a single spreadsheet. A worksheet is simply a subset of the spreadsheet divided for the sake of clarity. Functionally, the spreadsheet operates as a whole and all cells operate as global variables within the spreadsheet (each variable having 'read' access only except its containing cell).
A cell may contain a value or a formula, or it may simply be left empty. By convention, formulas usually begin with = sign.
A value can be entered from the computer keyboard by directly typing into the cell itself. Alternatively, a value can be based on a formula (see below), which might perform a calculation, display the current date or time, or retrieve external data such as a stock quote or a database value.
The Spreadsheet Value Rule
Computer scientist Alan Kay used the term value rule to summarize a spreadsheet's operation: a cell's value relies solely on the formula the user has typed into the cell. [48] The formula may rely on the value of other cells, but those cells are likewise restricted to user-entered data or formulas. There are no 'side effects' to calculating a formula: the only output is to display the calculated result inside its occupying cell. There is no natural mechanism for permanently modifying the contents of a cell unless the user manually modifies the cell's contents. In the context of programming languages, this yields a limited form of first-order functional programming. [49]
A standard of spreadsheets since the 1980s, this optional feature eliminates the need to manually request the spreadsheet program to recalculate values (nowadays typically the default option unless specifically 'switched off' for large spreadsheets, usually to improve performance). Some earlier spreadsheets required a manual request to recalculate since the recalculation of large or complex spreadsheets often reduced data entry speed. Many modern spreadsheets still retain this option.
Recalculation generally requires that there are no circular dependencies in a spreadsheet. A dependency graph is a graph that has a vertex for each object to be updated, and an edge connecting two objects whenever one of them needs to be updated earlier than the other. Dependency graphs without circular dependencies form directed acyclic graphs, representations of partial orderings (in this case, across a spreadsheet) that can be relied upon to give a definite result. [50]
This feature refers to updating a cell's contents periodically with a value from an external source—such as a cell in a "remote" spreadsheet. For shared, Web-based spreadsheets, it applies to "immediately" updating cells another user has updated. All dependent cells must be updated also.
Once entered, selected cells (or the entire spreadsheet) can optionally be "locked" to prevent accidental overwriting. Typically this would apply to cells containing formulas but might apply to cells containing "constants" such as a kilogram/pounds conversion factor (2.20462262 to eight decimal places). Even though individual cells are marked as locked, the spreadsheet data are not protected until the feature is activated in the file preferences.
A cell or range can optionally be defined to specify how the value is displayed. The default display format is usually set by its initial content if not specifically previously set, so that for example "31/12/2007" or "31 Dec 2007" would default to the cell format of date. Similarly adding a % sign after a numeric value would tag the cell as a percentage cell format. The cell contents are not changed by this format, only the displayed value.
Some cell formats such as "numeric" or "currency" can also specify the number of decimal places.
This can allow invalid operations (such as doing multiplication on a cell containing a date), resulting in illogical results without an appropriate warning.
Depending on the capability of the spreadsheet application, each cell (like its counterpart the "style" in a word processor) can be separately formatted using the attributes of either the content (point size, color, bold or italic) or the cell (border thickness, background shading, color). To aid the readability of a spreadsheet, cell formatting may be conditionally applied to data; for example, a negative number may be displayed in red.
A cell's formatting does not typically affect its content and depending on how cells are referenced or copied to other worksheets or applications, the formatting may not be carried with the content.
In most implementations, a cell, or group of cells in a column or row, can be "named" enabling the user to refer to those cells by a name rather than by a grid reference. Names must be unique within the spreadsheet, but when using multiple sheets in a spreadsheet file, an identically named cell range on each sheet can be used if it is distinguished by adding the sheet name. One reason for this usage is for creating or running macros that repeat a command across many sheets. Another reason is that formulas with named variables are readily checked against the algebra they are intended to implement (they resemble Fortran expressions). The use of named variables and named functions also makes the spreadsheet structure more transparent.
In place of a named cell, an alternative approach is to use a cell (or grid) reference. Most cell references indicate another cell in the same spreadsheet, but a cell reference can also refer to a cell in a different sheet within the same spreadsheet, or (depending on the implementation) to a cell in another spreadsheet entirely, or a value from a remote application.
A typical cell reference in "A1" style consists of one or two case-insensitive letters to identify the column (if there are up to 256 columns: A–Z and AA–IV) followed by a row number (e.g., in the range 1–65536). Either part can be relative (it changes when the formula it is in is moved or copied), or absolute (indicated with $ in front of the part concerned of the cell reference). The alternative "R1C1" reference style consists of the letter R, the row number, the letter C, and the column number; relative row or column numbers are indicated by enclosing the number in square brackets. Most current spreadsheets use the A1 style, some providing the R1C1 style as a compatibility option.
When the computer calculates a formula in one cell to update the displayed value of that cell, cell reference(s) in that cell, naming some other cell(s), causes the computer to fetch the value of the named cell(s).
A cell on the same "sheet" is usually addressed as:
=A1
A cell on a different sheet of the same spreadsheet is usually addressed as:
=SHEET2!A1 (that is; the first cell in sheet 2 of the same spreadsheet).
Some spreadsheet implementations in Excel allow cell references to another spreadsheet (not the currently open and active file) on the same computer or a local network. It may also refer to a cell in another open and active spreadsheet on the same computer or network that is defined as shareable. These references contain the complete filename, such as:
='C:\Documents and Settings\Username\My spreadsheets\[main sheet]Sheet1!A1
In a spreadsheet, references to cells automatically update when new rows or columns are inserted or deleted. Care must be taken, however, when adding a row immediately before a set of column totals to ensure that the totals reflect the values of the additional rows—which they often do not.
A circular reference occurs when the formula in one cell refers—directly, or indirectly through a chain of cell references—to another cell that refers back to the first cell. Many common errors cause circular references. However, some valid techniques use circular references. These techniques, after many spreadsheet recalculations, (usually) converge on the correct values for those cells.
Likewise, instead of using a named range of cells, a range reference can be used. Reference to a range of cells is typical of the form (A1:A6), which specifies all the cells in the range A1 through to A6. A formula such as "=SUM(A1:A6)" would add all the cells specified and put the result in the cell containing the formula itself.
In the earliest spreadsheets, cells were a simple two-dimensional grid. Over time, the model has expanded to include a third dimension, and in some cases a series of named grids, called sheets. The most advanced examples allow inversion and rotation operations which can slice and project the data set in various ways.
A formula identifies the calculation needed to place the result in the cell it is contained within. A cell containing a formula, therefore, has two display components; the formula itself and the resulting value. The formula is normally only shown when the cell is selected by "clicking" the mouse over a particular cell; otherwise, it contains the result of the calculation.
A formula assigns values to a cell or range of cells, and typically has the format:
=expression |
where the expression consists of:
2
, 9.14
or 6.67E-11
;A1
for a single cell or B1:B3
for a range;+
, -
, *
, /
, and others;>=
, <
, and others; and,SUM()
, TAN()
, and many others.When a cell contains a formula, it often contains references to other cells. Such a cell reference is a type of variable. Its value is the value of the referenced cell or some derivation of it. If that cell in turn references other cells, the value depends on the values of those. References can be relative (e.g., A1
, or B1:B3
), absolute (e.g., $A$1
, or $B$1:$B$3
) or mixed row– or column-wise absolute/relative (e.g., $A1
is column-wise absolute and A$1
is row-wise absolute).
The available options for valid formulas depend on the particular spreadsheet implementation but, in general, most arithmetic operations and quite complex nested conditional operations can be performed by most of today's commercial spreadsheets. Modern implementations also offer functions to access custom-build functions, remote data, and applications.
A formula may contain a condition (or nested conditions)—with or without an actual calculation—and is sometimes used purely to identify and highlight errors. In the example below, it is assumed the sum of a column of percentages (A1 through A6) is tested for validity and an explicit message put into the adjacent right-hand cell.
Further examples:
The best way to build up conditional statements is step by step composing followed by trial and error testing and refining code.
A spreadsheet does not have to contain any formulas at all, in which case it could be considered merely a collection of data arranged in rows and columns (a database) like a calendar, timetable, or simple list. Because of its ease of use, formatting, and hyperlinking capabilities, many spreadsheets are used solely for this purpose.
Spreadsheets usually contain several supplied functions, such as arithmetic operations (for example, summations, averages, and so forth), trigonometric functions, statistical functions, and so forth. In addition there is often a provision for user-defined functions. In Microsoft Excel, these functions are defined using Visual Basic for Applications in the supplied Visual Basic editor, and such functions are automatically accessible on the worksheet. Also, programs can be written that pull information from the worksheet, perform some calculations, and report the results back to the worksheet. In the figure, the name sq is user-assigned, and the function sq is introduced using the Visual Basic editor supplied with Excel. Name Manager displays the spreadsheet definitions of named variables x & y.
Functions themselves cannot write into the worksheet but simply return their evaluation. However, in Microsoft Excel, subroutines can write values or text found within the subroutine directly to the spreadsheet. The figure shows the Visual Basic code for a subroutine that reads each member of the named column variable x, calculates its square, and writes this value into the corresponding element of named column variable y. The y column contains no formula because its values are calculated in the subroutine, not on the spreadsheet, and simply are written in.
Whenever a reference is made to a cell or group of cells that are not located within the current physical spreadsheet file, it is considered as accessing a "remote" spreadsheet. The contents of the referenced cell may be accessed either on the first reference with a manual update or more recently in the case of web-based spreadsheets, as a near real-time value with a specified automatic refresh interval.
Many spreadsheet applications permit charts and graphs (e.g., histograms, pie charts) to be generated from specified groups of cells that are dynamically re-built as cell contents change. The generated graphic component can either be embedded within the current sheet or added as a separate object. To create an Excel histogram, a formula based on the REPT function can be used. [51]
In the late 1980s and early 1990s, first Javelin Software and Lotus Improv appeared. Unlike models in a conventional spreadsheet, they utilized models built on objects called variables, not on data in cells of a report. These multi-dimensional spreadsheets enabled viewing data and algorithms in various self-documenting ways, including simultaneous multiple synchronized views. For example, users of Javelin could move through the connections between variables on a diagram while seeing the logical roots and branches of each variable. This is an example of what is perhaps its primary contribution of the earlier Javelin—the concept of traceability of a user's logic or model structure through its twelve views. A complex model can be dissected and understood by others who had no role in its creation.
In these programs, a time series, or any variable, was an object in itself, not a collection of cells that happen to appear in a row or column. Variables could have many attributes, including complete awareness of their connections to all other variables, data references, and text and image notes. Calculations were performed on these objects, as opposed to a range of cells, so adding two-time series automatically aligns them in calendar time, or in a user-defined time frame. Data were independent of worksheets—variables, and therefore data, could not be destroyed by deleting a row, column, or entire worksheet. For instance, January's costs are subtracted from January's revenues, regardless of where or whether either appears in a worksheet. This permits actions later used in pivot tables, except that flexible manipulation of report tables, was but one of many capabilities supported by variables. Moreover, if costs were entered by week and revenues by month, the program could allocate or interpolate as appropriate. This object design enabled variables and whole models to reference each other with user-defined variable names and to perform multidimensional analysis and massive, but easily editable consolidations.
Trapeze, [47] a spreadsheet on the Mac, went further and explicitly supported not just table columns, but also matrix operators.
Spreadsheets that have a formula language based upon logical expressions, rather than arithmetic expressions are known as logical spreadsheets. Such spreadsheets can be used to reason deductively about their cell values.
Just as the early programming languages were designed to generate spreadsheet printouts, programming techniques themselves have evolved to process tables (also known as spreadsheets or matrices) of data more efficiently in the computer itself.
Spreadsheets are a popular end-user development tool. [52] EUD denotes activities or techniques in which people who are not professional developers create automated behavior and complex data objects without significant knowledge of a programming language. Many people find it easier to perform calculations in spreadsheets than by writing the equivalent sequential program. This is due to several traits of spreadsheets.
A "spreadsheet program" is designed to perform general computation tasks using spatial relationships rather than time as the primary organizing principle.
It is often convenient to think of a spreadsheet as a mathematical graph, where the nodes are spreadsheet cells, and the edges are references to other cells specified in formulas. This is often called the dependency graph of the spreadsheet. References between cells can take advantage of spatial concepts such as relative position and absolute position, as well as named locations, to make the spreadsheet formulas easier to understand and manage.
Spreadsheets usually attempt to automatically update cells when the cells depend on change. The earliest spreadsheets used simple tactics like evaluating cells in a particular order, but modern spreadsheets calculate following a minimal recomputation order from the dependency graph. Later spreadsheets also include a limited ability to propagate values in reverse, altering source values so that a particular answer is reached in a certain cell. Since spreadsheet cell formulas are not generally invertible, though, this technique is of somewhat limited value.
Many of the concepts common to sequential programming models have analogs in the spreadsheet world. For example, the sequential model of the indexed loop is usually represented as a table of cells, with similar formulas (normally differing only in which cells they reference).
Spreadsheets have evolved to use scripting programming languages like VBA as a tool for extensibility beyond what the spreadsheet language makes easy.
While spreadsheets represented a major step forward in quantitative modeling, they have deficiencies. Their shortcomings include the perceived unfriendliness of alpha-numeric cell addresses. [58]
Other problems associated with spreadsheets include: [66] [67]
While there are built-in and third-party tools for desktop spreadsheet applications that address some of these shortcomings, awareness, and use of these is generally low. A good example of this is that 55% of Capital market professionals "don't know" how their spreadsheets are audited; only 6% invest in a third-party solution [76]
Spreadsheet risk is the risk associated with deriving a materially incorrect value from a spreadsheet application that will be utilized in making a related (usually numerically based) decision. Examples include the valuation of an asset, the determination of financial accounts, the calculation of medicinal doses, or the size of a load-bearing beam for structural engineering. The risk may arise from inputting erroneous or fraudulent data values, from mistakes (or incorrect changes) within the logic of the spreadsheet or the omission of relevant updates (e.g., out of date exchange rates). Some single-instance errors have exceeded US$1 billion. [77] [78] Because spreadsheet risk is principally linked to the actions (or inaction) of individuals it is defined as a sub-category of operational risk.
Despite this, research [79] carried out by ClusterSeven revealed that around half (48%) of c-level executives and senior managers at firms reporting annual revenues over £50m said there were either no usage controls at all or poorly applied manual processes over the use of spreadsheets at the firms. [79] [80]
In 2013 Thomas Herndon, a graduate student of economics at the University of Massachusetts Amherst found major coding flaws in the spreadsheet used by the economists Carmen Reinhart and Kenneth Rogoff in Growth in a Time of Debt , a very influential 2010 journal article. The Reinhart and Rogoff article was widely used as justification to drive 2010–2013 European austerity programs. [81]
Daniel Singer Bricklin is an American businessman and engineer who is the co-creator, with Bob Frankston, of VisiCalc, the first spreadsheet program. He also founded Software Garden, Inc., of which he is currently president, and Trellix, which he left in 2004. He currently serves as the chief technology officer of Alpha Software.
Lotus 1-2-3 is a discontinued spreadsheet program from Lotus Software. It was the first killer application of the IBM PC, was hugely popular in the 1980s, and significantly contributed to the success of IBM PC-compatibles in the business market.
Microsoft Excel is a spreadsheet editor developed by Microsoft for Windows, macOS, Android, iOS and iPadOS. It features calculation or computation capabilities, graphing tools, pivot tables, and a macro programming language called Visual Basic for Applications (VBA). Excel forms part of the Microsoft 365 suite of software.
Multiplan is a spreadsheet program developed by Microsoft and introduced in 1982 as a competitor to VisiCalc.
VisiCalc is the first spreadsheet computer program for personal computers, originally released for the Apple II by VisiCorp on October 17, 1979. It is considered the killer application for the Apple II, turning the microcomputer from a hobby for computer enthusiasts into a serious business tool, and then prompting IBM to introduce the IBM PC two years later. More than 700,000 copies were sold in six years, and up to 1 million copies over its history.
Lotus Improv is a discontinued spreadsheet program from Lotus Development released in 1991 for the NeXTSTEP platform and then for Windows 3.1 in 1993. Development was put on hiatus in 1994 after slow sales on the Windows platform, and officially ended in April 1996 after Lotus was purchased by IBM.
Comma-separated values (CSV) is a text file format that uses commas to separate values, and newlines to separate records. A CSV file stores tabular data in plain text, where each line of the file typically represents one data record. Each record consists of the same number of fields, and these are separated by commas in the CSV file. If the field delimiter itself may appear within a field, fields can be surrounded with quotation marks.
TK Solver is a mathematical modeling and problem solving software system based on a declarative, rule-based language, commercialized by Universal Technical Systems, Inc.
Essbase is a multidimensional database management system (MDBMS) that provides a platform upon which to build analytic applications. Essbase began as a product from Arbor Software, which merged with Hyperion Software in 1998. Oracle Corporation acquired Hyperion Solutions Corporation in 2007. Until late 2005 IBM also marketed an OEM version of Essbase as DB2 OLAP Server.
Javelin Software Corporation (1984–1988) was a company in Cambridge, Massachusetts, USA, which developed an innovative modeling and data analysis product, also called Javelin, and later Javelin Plus. Seen as the successor technology to spreadsheet software in reviews of the time, and rival to the then-dominant Lotus 1-2-3, Javelin won numerous industry awards, including beating Microsoft's new Excel for the InfoWorld Software Product of the Year award.
SuperCalc is a CP/M-80 spreadsheet application published by Sorcim in 1980.
Spreadsheet 2000 is a discontinued spreadsheet program for Apple Macintosh computers, published by Casady & Greene, a distributor of many "smaller" Mac releases. It appears to have seen little in terms of sales, and was withdrawn from the market after only a short time. First released in 1993 as Let's Keep It Simple Spreadsheet, officially abbreviated Let's KISS, the product was renamed Spreadsheet 2000 for its 2.0 release in 1997.
Data Interchange Format (.dif) is a text file format used to import/export single spreadsheets between spreadsheet programs.
A worksheet, in the word's original meaning, is a sheet of paper on which one performs work. They come in many forms, most commonly associated with children's school work assignments, tax forms, and accounting or other business environments. Software is increasingly taking over the paper-based worksheet.
Numbers is a spreadsheet application developed by Apple Inc. as part of the iWork productivity suite alongside Keynote and Pages. Numbers is available for iOS and macOS High Sierra or newer. Numbers 1.0 on Mac OS X was announced on August 7, 2007, making it the newest application in the iWork suite. The iPad version was released on January 27, 2010. The app was later updated to support iPhone and iPod Touch.
A software calculator is a calculator that has been implemented as a computer program, rather than as a physical hardware device.
Construction cost estimating software is computer software designed for contractors to estimate construction costs for a specific project. A cost estimator will typically use estimating software to estimate their bid price for a project, which will ultimately become part of a resulting construction contract. Some architects, engineers, construction managers, and others may also use cost estimating software to prepare cost estimates for purposes other than bidding such as budgeting and insurance claims.
Trapeze is a discontinued spreadsheet program for Macintosh systems running classic Mac OS. It introduced the concept of using named ranges for most operations instead of cell addresses, allowing formulas to be freed of the location of the data on the page. This, in turn, made updating the sheets by moving data around a safe operation, whereas in contemporary programs like Microsoft Excel and Lotus 1-2-3 this often led to broken formulas. The system did not rely on the sheet as the basis for storage, and allowed multiple tables, charts, graphics and text, which they referred to as "blocks", to be positioned freely.
Table-oriented programming (TOP) is a data-focused programming paradigm, part of the data-oriented group of paradigms.
A software interface consisting of an interactive grid made up of cells in which data or formulas are entered for analysis or presentation.
(Computer Science) a computer program that allows easy entry and manipulation of figures, equations, and text, used esp for financial planning and budgeting
Release 3.0 is being written in the computer language known as C, to provide easy transportability among PCs, Macs and mainframes.
[...] the expenditures of these institutions are carefully audited by an accounting staff at the Department. A spread sheet showing every item of expenditure is prepared each month so that the superintendent is kept posted, not only on the amounts expended, but is able to see at a glance what the same items are costing in similar institutions in the Province.
We maintain, in our general ledger, a so-called Spread Sheet which is a long sheet with the name of each individual plant in a particular column.
TABOL Database Manager (TDM), an enhancement to the TABOL financial analysis language, was also introduced in August 1982
Some say that half of all IBM PCs, in their hundreds of thousands, are running just 1-2-3. Numbers— clever, quick, knowledgeable— boiling the stupidity out of countless business decisions. Interesting how essential the quickness is. It's 1-2-3's speed that put it on top.