Quality assurance (QA) is the term used in both manufacturing and service industries to describe the systematic efforts taken to assure that the product(s) delivered to customer(s) meet with the contractual and other agreed upon performance, design, reliability, and maintainability expectations of that customer. The core purpose of Quality Assurance is to prevent mistakes and defects in the development and production of both manufactured products, such as automobiles and shoes, and delivered services, such as automotive repair and athletic shoe design. Assuring quality and therefore avoiding problems and delays when delivering products or services to customers is what ISO 9000 defines as that "part of quality management focused on providing confidence that quality requirements will be fulfilled". [1] This defect prevention aspect of quality assurance differs from the defect detection aspect of quality control and has been referred to as a shift left since it focuses on quality efforts earlier in product development and production (i.e., a shift to the left of a linear process diagram reading left to right) [2] and on avoiding defects in the first place rather than correcting them after the fact.
The terms "quality assurance" and "quality control" are often used interchangeably to refer to ways of ensuring the quality of a service or product. [3] For instance, the term "assurance" is often used in a context such as: Implementation of inspection and structured testing as a measure of quality assurance in a television set software project at Philips Semiconductors is described. [4] where inspection and structured testing are the measurement phase of a quality assurance strategy referred to as the DMAIC model (define, measure, analyze, improve, control). DMAIC is a data-driven quality strategy used to improve processes. [5] The term "control" is the fifth phase of this strategy.
Quality assurance comprises administrative and procedural activities implemented in a quality system so that requirements and goals for a product, service or activity will be accomplished. [3] It is the systematic measurement, comparison with a standard, and monitoring of processes in an associated feedback loop that confers error prevention. [6] This can be contrasted with quality control, which is focused on process output. [7]
Quality assurance includes two principles: "fit for purpose" (the product should be suitable for the intended purpose); and "right first time" (mistakes should be eliminated). QA includes management of the quality of raw materials, assemblies, products and components, services related to production, and management, production and inspection processes. [8] The two principles also manifest before the background of developing (engineering) a novel technical product: The task of engineering is to make it work once, while the task of quality assurance is to make it work all the time. [9]
Historically, defining what suitable product or service quality means has been a more difficult process, determined in many ways, from the subjective user-based approach that contains "the different weights that individuals normally attach to quality characteristics," to the value-based approach which finds consumers linking quality to price and making overall conclusions of quality based on such a relationship. [10]
During the Middle Ages, guilds adopted responsibility for the quality of goods and services offered by their members, setting and maintaining certain standards for guild membership. [11]
Royal governments purchasing material were interested in quality control as customers. For this reason, King John of England appointed William de Wrotham to report about the construction and repair of ships. [12] Centuries later, Samuel Pepys, Secretary to the British Admiralty, appointed multiple such overseers to standardize sea rations and naval training. [13]
Prior to the extensive division of labor and mechanization resulting from the Industrial Revolution, it was possible for workers to control the quality of their own products. The Industrial Revolution led to a system in which large groups of people performing a specialized type of work were grouped together under the supervision of a foreman who was appointed to control the quality of work manufactured.
During the time of the First World War, manufacturing processes typically became more complex, with larger numbers of workers being supervised. This period saw the widespread introduction of mass production and piece work, which created problems as workmen could now earn more money by the production of extra products, which in turn occasionally led to poor quality workmanship being passed on to the assembly lines. Pioneers such as Frederick Winslow Taylor and Henry Ford recognized the limitations of the methods being used in mass production at the time and the subsequent varying quality of output. Taylor, utilizing the concept of scientific management, helped separate production tasks into many simple steps (the assembly line) and limited quality control to a few specific individuals, limiting complexity. [14] Ford emphasized standardization of design and component standards to ensure a standard product was produced, while quality was the responsibility of machine inspectors, "placed in each department to cover all operations ... at frequent intervals, so that no faulty operation shall proceed for any great length of time." [15]
Out of this also came statistical process control (SPC), which was pioneered by Walter A. Shewhart at Bell Laboratories in the early 1920s. Shewhart developed the control chart in 1924 and the concept of a state of statistical control. Statistical control is equivalent to the concept of exchangeability [16] [17] developed by logician William Ernest Johnson, also in 1924, in his book Logic, Part III: The Logical Foundations of Science. [18] Along with a team at AT&T that included Harold Dodge and Harry Romig, he worked to put sampling inspection on a rational statistical basis as well. Shewhart consulted with Colonel Leslie E. Simon in the application of control charts to munitions manufacture at the Army's Picatinny Arsenal in 1934. [19] That successful application helped convince Army Ordnance to engage AT&T's George Edwards to consult on the use of statistical quality control among its divisions and contractors at the outbreak of World War II. [20]
After World War II, many countries' manufacturing capabilities that had been destroyed during the war were rebuilt. General Douglas MacArthur oversaw the rebuilding of Japan. He involved two key people in the development of modern quality concepts: W. Edwards Deming and Joseph Juran. They and others promoted the collaborative concepts of quality to Japanese business and technical groups, and these groups used these concepts in the redevelopment of the Japanese economy. [21]
Although there were many people trying to lead United States industries toward a more comprehensive approach to quality, the US continued to apply the Quality Control (QC) concepts of inspection and sampling to remove defective products from production lines, essentially unaware of or ignoring advances in QA for decades. [22]
It is valuable to failure test or stress test a complete consumer product. In mechanical terms this is the operation of a product until it fails, often under stresses such as increasing vibration, temperature, and humidity. This may expose many unanticipated weaknesses in the product, and the data is used to drive engineering and manufacturing process improvements. Often quite simple changes can dramatically improve product service, such as changing to mold-resistant paint or adding lock-washer placement to the training for new assembly personnel.
Statistical control is based on analyses of objective and subjective data. [23] Many organizations use statistical process control as a tool in any quality improvement effort [24] to track quality data. Product quality data is statistically charted to distinguish between common cause variation or special cause variation. [25]
Walter Shewart of Bell Telephone Laboratories recognized that when a product is made, data can be taken from scrutinized areas of a sample lot of the part and statistical variances are then analyzed and charted. Control can then be implemented on the part in the form of rework or scrap, or control can be implemented on the process that made the part, ideally eliminating the defect before more parts can be made like it. [23]
The quality of products is dependent upon that of the participating constituents, [26] some of which are sustainable and effectively controlled while others are not. The process(es) which are managed with QA pertain to Total quality management.
If the specification does not reflect the true quality requirements, the product's quality cannot be guaranteed. For instance, the parameters for a pressure vessel should cover not only the material and dimensions but operating, environmental, safety, reliability and maintainability requirements.
ISO 17025 is an international standard that specifies the general requirements for the competence to carry out tests and or calibrations. There are 15 management requirements and 10 technical requirements. These requirements outline what a laboratory must do to become accredited. Management system refers to the organization's structure for managing its processes or activities that transform inputs of resources into a product or service which meets the organization's objectives, such as satisfying the customer's quality requirements, complying with regulations, or meeting environmental objectives. WHO has developed several tools and offers training courses for quality assurance in public health laboratories. [27]
The Capability Maturity Model Integration (CMMI) model is widely used to implement Process and Product Quality Assurance (PPQA) in an organization. The CMMI maturity levels can be divided into 5 steps, which a company can achieve by performing specific activities within the organization.
During the 1980s, the concept of "company quality" with the focus on management and people came to the fore in the U.S. [22] It was considered that, if all departments approached quality with an open mind, success was possible if management led the quality improvement process.
The company-wide quality approach places an emphasis on four aspects (enshrined in standards such as ISO 9001): [28]
The quality of the outputs is at risk if any of these aspects is deficient.
The importance of actually measuring Quality Culture throughout the organization is illustrated by a survey that was done by Forbes Insights in partnership with the American Society for Quality. 75% of senior or C-suite titles believed that their organization exhibits "a comprehensive, group-wide culture of quality." But agreement with that response dropped to less than half among those with quality job titles. In other words, the further from the C-suite, the less favorable the view of the culture of quality. [29] A survey of more than 60 multinational companies found that those companies whose employees rated as having a low quality culture had increased costs of $67 million/year for every 5000 employees compared to those rated as having a high quality culture. [30]
QA is not limited to manufacturing, and can be applied to any business or non-business activity, including: design, consulting, banking, insurance, computer software development, retailing, investment, transportation, education, and translation.
It comprises a quality improvement process, which is generic in the sense that it can be applied to any of these activities and it establishes a quality culture, which supports the achievement of quality. [31]
This in turn is supported by quality management practices which can include a number of business systems and which are usually specific to the activities of the business unit concerned.
In manufacturing and construction activities, these business practices can be equated to the models for quality assurance defined by the International Standards contained in the ISO 9000 series and the specified specifications for quality systems.
In the system of Company Quality, the work being carried out was shop floor inspection which did not reveal the major quality problems. This led to quality assurance or total quality control, which has come into being recently.
QA is very important in the medical field because it helps to identify the standards of medical equipment and services. [32] [33] Hospitals and laboratories make use of external agencies in order to ensure standards for equipment such as X-ray machines, Diagnostic Radiology and AERB. QA is particularly applicable throughout the development and introduction of new medicines and medical devices. The Research Quality Association (RQA) supports and promotes the quality of research in life sciences, through its members and regulatory bodies.
The term product assurance (PA) is often used instead of quality assurance and is, alongside project management and engineering, one of the three primary project functions. Quality assurance is seen as one part of product assurance. Due to the sometimes catastrophic consequences a single failure can have for human lives, the environment, a device, or a mission, product assurance plays a particularly important role here. It has organizational, budgetary and product developmental independence meaning that it reports to highest management only, has its own budget, and does not expend labor to help build a product. Product assurance stands on an equal footing with project management but embraces the customer's point of view. [9]
Software quality assurance refers to monitoring the software engineering processes and methods used to ensure quality. Various methods or frameworks are employed for this, such as ensuring conformance to one or more standards, e.g. ISO 25010 (which supersede ISO/IEC 9126) or process models such as CMMI, or SPICE. In addition, enterprise quality management software is used to correct issues such as supply chain disaggregation and to ensure regulatory compliance; these are vital for medical device manufacturers. [34]
Consultants and contractors are sometimes employed when introducing new quality practices and methods, particularly where the relevant skills and expertise and resources are not available within the organization. Consultants and contractors will often employ Quality Management Systems (QMS), auditing and procedural documentation writing CMMI, Six Sigma, Measurement Systems Analysis (MSA), Quality Function Deployment (QFD), Failure Mode and Effects Analysis (FMEA), and Advance Product Quality Planning (APQP).
A quality management system (QMS) is a collection of business processes focused on consistently meeting customer requirements and enhancing their satisfaction. It is aligned with an organization's purpose and strategic direction. It is expressed as the organizational goals and aspirations, policies, processes, documented information, and resources needed to implement and maintain it. Early quality management systems emphasized predictable outcomes of an industrial product production line, using simple statistics and random sampling. By the 20th century, labor inputs were typically the most costly inputs in most industrialized societies, so focus shifted to team cooperation and dynamics, especially the early signaling of problems via a continual improvement cycle. In the 21st century, QMS has tended to converge with sustainability and transparency initiatives, as both investor and customer satisfaction and perceived quality are increasingly tied to these factors. Of QMS regimes, the ISO 9000 family of standards is probably the most widely implemented worldwide – the ISO 19011 audit regime applies to both and deals with quality and sustainability and their integration.
Configuration management (CM) is a management process for establishing and maintaining consistency of a product's performance, functional, and physical attributes with its requirements, design, and operational information throughout its life. The CM process is widely used by military engineering organizations to manage changes throughout the system lifecycle of complex systems, such as weapon systems, military vehicles, and information systems. Outside the military, the CM process is also used with IT service management as defined by ITIL, and with other domain models in the civil engineering and other industrial engineering segments such as roads, bridges, canals, dams, and buildings.
Quality control (QC) is a process by which entities review the quality of all factors involved in production. ISO 9000 defines quality control as "a part of quality management focused on fulfilling quality requirements".
The ISO 9000 family is a set of five quality management systems (QMS) standards by the International Organization for Standardization (ISO) which help organizations ensure that they meet customer and other stakeholder needs within the statutory and regulatory requirements related to a product or service. The ISO refers to the set of standards as a "family", bringing together the standard for quality management systems and a set of "supporting standards", and their presentation as a family facilitates their integrated application within an organisation. ISO 9000 deals with the fundamentals and vocabulary of QMS, including the seven quality management principles that underlie the family of standards. ISO 9001 deals with the requirements that organizations wishing to meet the standard must fulfill. ISO/TS 9002 offers guidelines for the application of ISO 9001. ISO 9004 gives guidance on achieving sustained organizational success.
Statistical process control (SPC) or statistical quality control (SQC) is the application of statistical methods to monitor and control the quality of a production process. This helps to ensure that the process operates efficiently, producing more specification-conforming products with less waste scrap. SPC can be applied to any process where the "conforming product" output can be measured. Key tools used in SPC include run charts, control charts, a focus on continuous improvement, and the design of experiments. An example of a process where SPC is applied is manufacturing lines.
PDCA or plan–do–check–act is an iterative design and management method used in business for the control and continual improvement of processes and products. It is also known as the Shewhart cycle, or the control circle/cycle. Another version of this PDCA cycle is OPDCA. The added "O" stands for observation or as some versions say: "Observe the current condition." This emphasis on observation and current condition has currency with the literature on lean manufacturing and the Toyota Production System. The PDCA cycle, with Ishikawa's changes, can be traced back to S. Mizuno of the Tokyo Institute of Technology in 1959.
ISO/IEC 15504Information technology – Process assessment, also termed Software Process Improvement and Capability dEtermination (SPICE), is a set of technical standards documents for the computer software development process and related business management functions. It is one of the joint International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) standards, which was developed by the ISO and IEC joint subcommittee, ISO/IEC JTC 1/SC 7.
In the context of software engineering, software quality refers to two related but distinct notions:
Quality management ensures that an organization, product or service consistently functions well. It has four main components: quality planning, quality assurance, quality control, and quality improvement. Quality management is focused both on product and service quality and the means to achieve it. Quality management, therefore, uses quality assurance and control of processes as well as products to achieve more consistent quality. Quality control is also part of quality management. What a customer wants and is willing to pay for it, determines quality. It is a written or unwritten commitment to a known or unknown consumer in the market. Quality can be defined as how well the product performs its intended function.
Software quality assurance (SQA) is a means and practice of monitoring all software engineering processes, methods, and work products to ensure compliance against defined standards. It may include ensuring conformance to standards or models, such as ISO/IEC 9126, SPICE or CMMI.
Software Quality Management (SQM) is a management process that aims to develop and manage the quality of software in such a way so as to best ensure that the product meets the quality standards expected by the customer while also meeting any necessary regulatory and developer requirements, if any. Software quality managers require software to be tested before it is released to the market, and they do this using a cyclical process-based quality assessment in order to reveal and fix bugs before release. Their job is not only to ensure their software is in good shape for the consumer but also to encourage a culture of quality throughout the enterprise.
Quality engineering is the discipline of engineering concerned with the principles and practice of product and service quality assurance and control. In software development, it is the management, development, operation and maintenance of IT systems and enterprise architectures with high quality standard.
An independent test organization is an organization, person, or company that tests products, materials, software, etc. according to agreed requirements. The test organization can be affiliated with the government or universities or can be an independent testing laboratory. They are independent because they are not affiliated with the producer nor the user of the item being tested: no commercial bias is present. These "contract testing" facilities are sometimes called "third party" testing or evaluation facilities.
In business, engineering, and manufacturing, quality – or high quality – has a pragmatic interpretation as the non-inferiority or superiority of something ; it is also defined as being suitable for the intended purpose while satisfying customer expectations. Quality is a perceptual, conditional, and somewhat subjective attribute and may be understood differently by different people. Consumers may focus on the specification quality of a product/service, or how it compares to competitors in the marketplace. Producers might measure the conformance quality, or degree to which the product/service was produced correctly. Support personnel may measure quality in the degree that a product is reliable, maintainable, or sustainable. In such ways, the subjectivity of quality is rendered objective via operational definitions and measured with metrics such as proxy measures.
A continual improvement process, also often called a continuous improvement process, is an ongoing effort to improve products, services, or processes. These efforts can seek "incremental" improvement over time or "breakthrough" improvement all at once. Delivery processes are constantly evaluated and improved in the light of their efficiency, effectiveness and flexibility.
CSA CAN3-Z299 is a series of quality assurance standards developed by the Canadian Standards Association in the 1970s. It is an alternative to the ISO 9000 series of standards. The stated objectives of the Z299 series of standards are:
Dorian Shainin was an American quality consultant, aeronautics engineer, author, and college professor most notable for his contributions in the fields of industrial problem solving, product reliability, and quality engineering, particularly the creation and development of the "Red X" concept.
In software engineering, a software development process or software development life cycle (SDLC) is a process of planning and managing software development. It typically involves dividing software development work into smaller, parallel, or sequential steps or sub-processes to improve design and/or product management. The methodology may include the pre-definition of specific deliverables and artifacts that are created and completed by a project team to develop or maintain an application.
Acceptance sampling uses statistical sampling to determine whether to accept or reject a production lot of material. It has been a common quality control technique used in industry.
This is an alphabetical list of articles pertaining specifically to quality engineering. For a broad overview of engineering, please see List of engineering topics. For biographies please see List of engineers.