String (computer science)

Last updated
Strings are typically made up of characters, and are often used to store human-readable data, such as words or sentences. String example.png
Strings are typically made up of characters, and are often used to store human-readable data, such as words or sentences.

In computer programming, a string is traditionally a sequence of characters, either as a literal constant or as some kind of variable. The latter may allow its elements to be mutated and the length changed, or it may be fixed (after creation). A string is generally considered as a data type and is often implemented as an array data structure of bytes (or words) that stores a sequence of elements, typically characters, using some character encoding. String may also denote more general arrays or other sequence (or list) data types and structures.

Contents

Depending on the programming language and precise data type used, a variable declared to be a string may either cause storage in memory to be statically allocated for a predetermined maximum length or employ dynamic allocation to allow it to hold a variable number of elements.

When a string appears literally in source code, it is known as a string literal or an anonymous string. [1]

In formal languages, which are used in mathematical logic and theoretical computer science, a string is a finite sequence of symbols that are chosen from a set called an alphabet.

Purpose

A primary purpose of strings is to store human-readable text, like words and sentences. Strings are used to communicate information from a computer program to the user of the program. [2] A program may also accept string input from its user. Further, strings may store data expressed as characters yet not intended for human reading.

Example strings and their purposes:

The term string may also designate a sequence of data or computer records other than characters like a "string of bits" but when used without qualification it refers to strings of characters. [4]

History

Use of the word "string" to mean any items arranged in a line, series or succession dates back centuries. [5] [6] In 19th-Century typesetting, compositors used the term "string" to denote a length of type printed on paper; the string would be measured to determine the compositor's pay. [7] [4] [8]

Use of the word "string" to mean "a sequence of symbols or linguistic elements in a definite order" emerged from mathematics, symbolic logic, and linguistic theory to speak about the formal behavior of symbolic systems, setting aside the symbols' meaning. [4]

For example, logician C. I. Lewis wrote in 1918: [9]

A mathematical system is any set of strings of recognisable marks in which some of the strings are taken initially and the remainder derived from these by operations performed according to rules which are independent of any meaning assigned to the marks. That a system should consist of 'marks' instead of sounds or odours is immaterial.

According to Jean E. Sammet, "the first realistic string handling and pattern matching language" for computers was COMIT in the 1950s, followed by the SNOBOL language of the early 1960s. [10]

String datatypes

A string datatype is a datatype modeled on the idea of a formal string. Strings are such an important and useful datatype that they are implemented in nearly every programming language. In some languages they are available as primitive types and in others as composite types. The syntax of most high-level programming languages allows for a string, usually quoted in some way, to represent an instance of a string datatype; such a meta-string is called a literal or string literal.

String length

Although formal strings can have an arbitrary finite length, the length of strings in real languages is often constrained to an artificial maximum. In general, there are two types of string datatypes: fixed-length strings, which have a fixed maximum length to be determined at compile time and which use the same amount of memory whether this maximum is needed or not, and variable-length strings, whose length is not arbitrarily fixed and which can use varying amounts of memory depending on the actual requirements at run time (see Memory management). Most strings in modern programming languages are variable-length strings. Of course, even variable-length strings are limited in length – by the size of available computer memory. The string length can be stored as a separate integer (which may put another artificial limit on the length) or implicitly through a termination character, usually a character value with all bits zero such as in C programming language. See also "Null-terminated" below.

Character encoding

String datatypes have historically allocated one byte per character, and, although the exact character set varied by region, character encodings were similar enough that programmers could often get away with ignoring this, since characters a program treated specially (such as period and space and comma) were in the same place in all the encodings a program would encounter. These character sets were typically based on ASCII or EBCDIC. If text in one encoding was displayed on a system using a different encoding, text was often mangled, though often somewhat readable and some computer users learned to read the mangled text.

Logographic languages such as Chinese, Japanese, and Korean (known collectively as CJK) need far more than 256 characters (the limit of a one 8-bit byte per-character encoding) for reasonable representation. The normal solutions involved keeping single-byte representations for ASCII and using two-byte representations for CJK ideographs. Use of these with existing code led to problems with matching and cutting of strings, the severity of which depended on how the character encoding was designed. Some encodings such as the EUC family guarantee that a byte value in the ASCII range will represent only that ASCII character, making the encoding safe for systems that use those characters as field separators. Other encodings such as ISO-2022 and Shift-JIS do not make such guarantees, making matching on byte codes unsafe. These encodings also were not "self-synchronizing", so that locating character boundaries required backing up to the start of a string, and pasting two strings together could result in corruption of the second string.

Unicode has simplified the picture somewhat. Most programming languages now have a datatype for Unicode strings. Unicode's preferred byte stream format UTF-8 is designed not to have the problems described above for older multibyte encodings. UTF-8, UTF-16 and UTF-32 require the programmer to know that the fixed-size code units are different from the "characters", the main difficulty currently is incorrectly designed APIs that attempt to hide this difference (UTF-32 does make code points fixed-sized, but these are not "characters" due to composing codes).

Implementations

Some languages, such as C++, Perl and Ruby, normally allow the contents of a string to be changed after it has been created; these are termed mutable strings. In other languages, such as Java, JavaScript, Lua, Python, and Go, the value is fixed and a new string must be created if any alteration is to be made; these are termed immutable strings. Some of these languages with immutable strings also provide another type that is mutable, such as Java and .NET's StringBuilder , the thread-safe Java StringBuffer , and the Cocoa NSMutableString. There are both advantages and disadvantages to immutability: although immutable strings may require inefficiently creating many copies, they are simpler and completely thread-safe.

Strings are typically implemented as arrays of bytes, characters, or code units, in order to allow fast access to individual units or substrings—including characters when they have a fixed length. A few languages such as Haskell implement them as linked lists instead.

Some languages, such as Prolog and Erlang, avoid implementing a dedicated string datatype at all, instead adopting the convention of representing strings as lists of character codes.

Representations

Representations of strings depend heavily on the choice of character repertoire and the method of character encoding. Older string implementations were designed to work with repertoire and encoding defined by ASCII, or more recent extensions like the ISO 8859 series. Modern implementations often use the extensive repertoire defined by Unicode along with a variety of complex encodings such as UTF-8 and UTF-16.

The term byte string usually indicates a general-purpose string of bytes, rather than strings of only (readable) characters, strings of bits, or such. Byte strings often imply that bytes can take any value and any data can be stored as-is, meaning that there should be no value interpreted as a termination value.

Most string implementations are very similar to variable-length arrays with the entries storing the character codes of corresponding characters. The principal difference is that, with certain encodings, a single logical character may take up more than one entry in the array. This happens for example with UTF-8, where single codes (UCS code points) can take anywhere from one to four bytes, and single characters can take an arbitrary number of codes. In these cases, the logical length of the string (number of characters) differs from the physical length of the array (number of bytes in use). UTF-32 avoids the first part of the problem.

Null-terminated

The length of a string can be stored implicitly by using a special terminating character; often this is the null character (NUL), which has all bits zero, a convention used and perpetuated by the popular C programming language. [11] Hence, this representation is commonly referred to as a C string. This representation of an n-character string takes n + 1 space (1 for the terminator), and is thus an implicit data structure.

In terminated strings, the terminating code is not an allowable character in any string. Strings with length field do not have this limitation and can also store arbitrary binary data.

An example of a null-terminated string stored in a 10-byte buffer, along with its ASCII (or more modern UTF-8) representation as 8-bit hexadecimal numbers is:

FRANK NUL kefw
46 16 521641164E164B1600166B16651666167716

The length of the string in the above example, "FRANK", is 5 characters, but it occupies 6 bytes. Characters after the terminator do not form part of the representation; they may be either part of other data or just garbage. (Strings of this form are sometimes called ASCIZ strings, after the original assembly language directive used to declare them.)

Byte- and bit-terminated

Using a special byte other than null for terminating strings has historically appeared in both hardware and software, though sometimes with a value that was also a printing character. $ was used by many assembler systems, : used by CDC systems (this character had a value of zero), and the ZX80 used " [12] since this was the string delimiter in its BASIC language.

Somewhat similar, "data processing" machines like the IBM 1401 used a special word mark bit to delimit strings at the left, where the operation would start at the right. This bit had to be clear in all other parts of the string. This meant that, while the IBM 1401 had a seven-bit word, almost no-one ever thought to use this as a feature, and override the assignment of the seventh bit to (for example) handle ASCII codes.

Early microcomputer software relied upon the fact that ASCII codes do not use the high-order bit, and set it to indicate the end of a string. It must be reset to 0 prior to output. [13]

Length-prefixed

The length of a string can also be stored explicitly, for example by prefixing the string with the length as a byte value. This convention is used in many Pascal dialects; as a consequence, some people call such a string a Pascal string or P-string. Storing the string length as byte limits the maximum string length to 255. To avoid such limitations, improved implementations of P-strings use 16-, 32-, or 64-bit words to store the string length. When the length field covers the address space, strings are limited only by the available memory.

If the length is bounded, then it can be encoded in constant space, typically a machine word, thus leading to an implicit data structure, taking n + k space, where k is the number of characters in a word (8 for 8-bit ASCII on a 64-bit machine, 1 for 32-bit UTF-32/UCS-4 on a 32-bit machine, etc.). If the length is not bounded, encoding a length n takes log(n) space (see fixed-length code), so length-prefixed strings are a succinct data structure, encoding a string of length n in log(n) + n space.

In the latter case, the length-prefix field itself does not have fixed length, therefore the actual string data needs to be moved when the string grows such that the length field needs to be increased.

Here is a Pascal string stored in a 10-byte buffer, along with its ASCII / UTF-8 representation:

lengthFRANKkefw
05164616521641164E164B166B16651666167716

Strings as records

Many languages, including object-oriented ones, implement strings as records with an internal structure like:

classstring{size_tlength;char*text;};

However, since the implementation is usually hidden, the string must be accessed and modified through member functions. text is a pointer to a dynamically allocated memory area, which might be expanded as needed. See also string (C++).

Other representations

Both character termination and length codes limit strings: For example, C character arrays that contain null (NUL) characters cannot be handled directly by C string library functions: Strings using a length code are limited to the maximum value of the length code.

Both of these limitations can be overcome by clever programming.

It is possible to create data structures and functions that manipulate them that do not have the problems associated with character termination and can in principle overcome length code bounds. It is also possible to optimize the string represented using techniques from run length encoding (replacing repeated characters by the character value and a length) and Hamming encoding [ clarification needed ].

While these representations are common, others are possible. Using ropes makes certain string operations, such as insertions, deletions, and concatenations more efficient.

The core data structure in a text editor is the one that manages the string (sequence of characters) that represents the current state of the file being edited. While that state could be stored in a single long consecutive array of characters, a typical text editor instead uses an alternative representation as its sequence data structure—a gap buffer, a linked list of lines, a piece table, or a rope—which makes certain string operations, such as insertions, deletions, and undoing previous edits, more efficient. [14]

Security concerns

The differing memory layout and storage requirements of strings can affect the security of the program accessing the string data. String representations requiring a terminating character are commonly susceptible to buffer overflow problems if the terminating character is not present, caused by a coding error or an attacker deliberately altering the data. String representations adopting a separate length field are also susceptible if the length can be manipulated. In such cases, program code accessing the string data requires bounds checking to ensure that it does not inadvertently access or change data outside of the string memory limits.

String data is frequently obtained from user input to a program. As such, it is the responsibility of the program to validate the string to ensure that it represents the expected format. Performing limited or no validation of user input can cause a program to be vulnerable to code injection attacks.

Literal strings

Sometimes, strings need to be embedded inside a text file that is both human-readable and intended for consumption by a machine. This is needed in, for example, source code of programming languages, or in configuration files. In this case, the NUL character does not work well as a terminator since it is normally invisible (non-printable) and is difficult to input via a keyboard. Storing the string length would also be inconvenient as manual computation and tracking of the length is tedious and error-prone.

Two common representations are:

Non-text strings

While character strings are very common uses of strings, a string in computer science may refer generically to any sequence of homogeneously typed data. A bit string or byte string, for example, may be used to represent non-textual binary data retrieved from a communications medium. This data may or may not be represented by a string-specific datatype, depending on the needs of the application, the desire of the programmer, and the capabilities of the programming language being used. If the programming language's string implementation is not 8-bit clean, data corruption may ensue.

C programmers draw a sharp distinction between a "string", aka a "string of characters", which by definition is always null terminated, vs. a "byte string" or "pseudo string" which may be stored in the same array but is often not null terminated. Using C string handling functions on such a "byte string" often seems to work, but later leads to security problems. [15] [16] [17]

String processing algorithms

There are many algorithms for processing strings, each with various trade-offs. Competing algorithms can be analyzed with respect to run time, storage requirements, and so forth. The name stringology was coined in 1984 by computer scientist Zvi Galil for the theory of algorithms and data structures used for string processing. [18] [19] [20]

Some categories of algorithms include:

Advanced string algorithms often employ complex mechanisms and data structures, among them suffix trees and finite-state machines.

Character string-oriented languages and utilities

Character strings are such a useful datatype that several languages have been designed in order to make string processing applications easy to write. Examples include the following languages:

Many Unix utilities perform simple string manipulations and can be used to easily program some powerful string processing algorithms. Files and finite streams may be viewed as strings.

Some APIs like Multimedia Control Interface, embedded SQL or printf use strings to hold commands that will be interpreted.

Many scripting programming languages, including Perl, Python, Ruby, and Tcl employ regular expressions to facilitate text operations. Perl is particularly noted for its regular expression use, [21] and many other languages and applications implement Perl compatible regular expressions.

Some languages such as Perl and Ruby support string interpolation, which permits arbitrary expressions to be evaluated and included in string literals.

Character string functions

String functions are used to create strings or change the contents of a mutable string. They also are used to query information about a string. The set of functions and their names varies depending on the computer programming language.

The most basic example of a string function is the string length function – the function that returns the length of a string (not counting any terminator characters or any of the string's internal structural information) and does not modify the string. This function is often named length or len. For example, length("hello world") would return 11. Another common function is concatenation, where a new string is created by appending two strings, often this is the + addition operator.

Some microprocessor's instruction set architectures contain direct support for string operations, such as block copy (e.g. In intel x86m REPNZ MOVSB). [22]

Formal theory

Let Σ be a finite set of symbols (alternatively called characters), called the alphabet. No assumption is made about the nature of the symbols. A string (or word) over Σ is any finite sequence of symbols from Σ. [23] For example, if Σ = {0, 1}, then 01011 is a string over Σ.

The length of a string s is the number of symbols in s (the length of the sequence) and can be any non-negative integer; it is often denoted as |s|. The empty string is the unique string over Σ of length 0, and is denoted ε or λ. [23] [24]

The set of all strings over Σ of length n is denoted Σn. For example, if Σ = {0, 1}, then Σ2 = {00, 01, 10, 11}. We have Σ0 = {ε} for every alphabet Σ.

The set of all strings over Σ of any length is the Kleene closure of Σ and is denoted Σ*. In terms of Σn,

For example, if Σ = {0, 1}, then Σ* = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ...}. Although the set Σ* itself is countably infinite, each element of Σ* is a string of finite length.

A set of strings over Σ (i.e. any subset of Σ*) is called a formal language over Σ. For example, if Σ = {0, 1}, the set of strings with an even number of zeros, {ε, 1, 00, 11, 001, 010, 100, 111, 0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111, ...}, is a formal language over Σ.

Concatenation and substrings

Concatenation is an important binary operation on Σ*. For any two strings s and t in Σ*, their concatenation is defined as the sequence of symbols in s followed by the sequence of characters in t, and is denoted st. For example, if Σ = {a, b, ..., z}, s = bear, and t = hug, then st = bearhug and ts = hugbear.

String concatenation is an associative, but non-commutative operation. The empty string ε serves as the identity element; for any string s, εs = sε = s. Therefore, the set Σ* and the concatenation operation form a monoid, the free monoid generated by Σ. In addition, the length function defines a monoid homomorphism from Σ* to the non-negative integers (that is, a function , such that ).

A string s is said to be a substring or factor of t if there exist (possibly empty) strings u and v such that t = usv. The relation "is a substring of" defines a partial order on Σ*, the least element of which is the empty string.

Prefixes and suffixes

A string s is said to be a prefix of t if there exists a string u such that t = su. If u is nonempty, s is said to be a proper prefix of t. Symmetrically, a string s is said to be a suffix of t if there exists a string u such that t = us. If u is nonempty, s is said to be a proper suffix of t. Suffixes and prefixes are substrings of t. Both the relations "is a prefix of" and "is a suffix of" are prefix orders.

Reversal

The reverse of a string is a string with the same symbols but in reverse order. For example, if s = abc (where a, b, and c are symbols of the alphabet), then the reverse of s is cba. A string that is the reverse of itself (e.g., s = madam) is called a palindrome, which also includes the empty string and all strings of length 1.

Rotations

A string s = uv is said to be a rotation of t if t = vu. For example, if Σ = {0, 1} the string 0011001 is a rotation of 0100110, where u = 00110 and v = 01. As another example, the string abc has three different rotations, viz. abc itself (with u=abc, v=ε), bca (with u=bc, v=a), and cab (with u=c, v=ab).

Lexicographical ordering

It is often useful to define an ordering on a set of strings. If the alphabet Σ has a total order (cf. alphabetical order) one can define a total order on Σ* called lexicographical order. The lexicographical order is total if the alphabetical order is, but is not well-founded for any nontrivial alphabet, even if the alphabetical order is. For example, if Σ = {0, 1} and 0 < 1, then the lexicographical order on Σ* includes the relationships ε < 0 < 00 < 000 < ... < 0001 < ... < 001 < ... < 01 < 010 < ... < 011 < 0110 < ... < 01111 < ... < 1 < 10 < 100 < ... < 101 < ... < 111 < ... < 1111 < ... < 11111 ... With respect to this ordering, e.g. the infinite set { 1, 01, 001, 0001, 00001, 000001, ... } has no minimal element.

See Shortlex for an alternative string ordering that preserves well-foundedness. For the example alphabet, the shortlex order is ε < 0 < 1 < 00 < 01 < 10 < 11 < 000 < 001 < 010 < 011 < 100 < 101 < 0110 < 111 < 0000 < 0001 < 0010 < 0011 < ... < 1111 < 00000 < 00001 ...

String operations

A number of additional operations on strings commonly occur in the formal theory. These are given in the article on string operations.

Topology

(Hyper)cube of binary strings of length 3 Hamming distance 3 bit binary.svg
(Hyper)cube of binary strings of length 3

Strings admit the following interpretation as nodes on a graph, where k is the number of symbols in Σ:

The natural topology on the set of fixed-length strings or variable-length strings is the discrete topology, but the natural topology on the set of infinite strings is the limit topology, viewing the set of infinite strings as the inverse limit of the sets of finite strings. This is the construction used for the p-adic numbers and some constructions of the Cantor set, and yields the same topology.

Isomorphisms between string representations of topologies can be found by normalizing according to the lexicographically minimal string rotation.

See also

Related Research Articles

In communications and information processing, code is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another form, sometimes shortened or secret, for communication through a communication channel or storage in a storage medium. An early example is an invention of language, which enabled a person, through speech, to communicate what they thought, saw, heard, or felt to others. But speech limits the range of communication to the distance a voice can carry and limits the audience to those present when the speech is uttered. The invention of writing, which converted spoken language into visual symbols, extended the range of communication across space and time.

<span class="mw-page-title-main">Character encoding</span> Using numbers to represent text characters

Character encoding is the process of assigning numbers to graphical characters, especially the written characters of human language, allowing them to be stored, transmitted, and transformed using digital computers. The numerical values that make up a character encoding are known as "code points" and collectively comprise a "code space", a "code page", or a "character map".

<span class="mw-page-title-main">Regular expression</span> Sequence of characters that forms a search pattern

A regular expression, sometimes referred to as rational expression, is a sequence of characters that specifies a match pattern in text. Usually such patterns are used by string-searching algorithms for "find" or "find and replace" operations on strings, or for input validation. Regular expression techniques are developed in theoretical computer science and formal language theory.

UTF-8 is a variable-length character encoding standard used for electronic communication. Defined by the Unicode Standard, the name is derived from Unicode Transformation Format – 8-bit.

<span class="mw-page-title-main">UTF-16</span> Variable-width encoding of Unicode, using one or two 16-bit code units

UTF-16 (16-bit Unicode Transformation Format) is a character encoding capable of encoding all 1,112,064 valid code points of Unicode (in fact this number of code points is dictated by the design of UTF-16). The encoding is variable-length, as code points are encoded with one or two 16-bit code units. UTF-16 arose from an earlier obsolete fixed-width 16-bit encoding now known as UCS-2 (for 2-byte Universal Character Set), once it became clear that more than 216 (65,536) code points were needed, including most emoji and important CJK characters such as for personal and place names.

<span class="mw-page-title-main">Character (computing)</span> Primitive data type

In computer and machine-based telecommunications terminology, a character is a unit of information that roughly corresponds to a grapheme, grapheme-like unit, or symbol, such as in an alphabet or syllabary in the written form of a natural language.

UTF-32 (32-bit Unicode Transformation Format) is a fixed-length encoding used to encode Unicode code points that uses exactly 32 bits (four bytes) per code point (but a number of leading bits must be zero as there are far fewer than 232 Unicode code points, needing actually only 21 bits). UTF-32 is a fixed-length encoding, in contrast to all other Unicode transformation formats, which are variable-length encodings. Each 32-bit value in UTF-32 represents one Unicode code point and is exactly equal to that code point's numerical value.

A string literal or anonymous string is a literal for a string value in the source code of a computer program. Modern programming languages commonly use a quoted sequence of characters, formally "bracketed delimiters", as in x = "foo", where "foo" is a string literal with value foo. Methods such as escape sequences can be used to avoid the problem of delimiter collision and allow the delimiters to be embedded in a string. There are many alternate notations for specifying string literals especially in complicated cases. The exact notation depends on the programming language in question. Nevertheless, there are general guidelines that most modern programming languages follow.

A text file is a kind of computer file that is structured as a sequence of lines of electronic text. A text file exists stored as data within a computer file system. In operating systems such as CP/M and DOS, where the operating system does not keep track of the file size in bytes, the end of a text file is denoted by placing one or more special characters, known as an end-of-file (EOF) marker, as padding after the last line in a text file. On modern operating systems such as Microsoft Windows and Unix-like systems, text files do not contain any special EOF character, because file systems on those operating systems keep track of the file size in bytes. Most text files need to have end-of-line delimiters, which are done in a few different ways depending on operating system. Some operating systems with record-orientated file systems may not use new line delimiters and will primarily store text files with lines separated as fixed or variable length records.

In computer programming, Base64 is a group of binary-to-text encoding schemes that transforms binary data into a sequence of printable characters, limited to a set of 64 unique characters. More specifically, the source binary data is taken 6 bits at a time, then this group of 6 bits is mapped to one of 64 unique characters.

<span class="mw-page-title-main">Newline</span> Special characters in computing signifying the end of a line of text

A newline is a control character or sequence of control characters in character encoding specifications such as ASCII, EBCDIC, Unicode, etc. This character, or a sequence of characters, is used to signify the end of a line of text and the start of a new one.

UTF-7 is an obsolete variable-length character encoding for representing Unicode text using a stream of ASCII characters. It was originally intended to provide a means of encoding Unicode text for use in Internet E-mail messages that was more efficient than the combination of UTF-8 with quoted-printable.

The null character is a control character with the value zero. It is present in many character sets, including those defined by the Baudot and ITA2 codes, ISO/IEC 646, the C0 control code, the Universal Coded Character Set, and EBCDIC. It is available in nearly all mainstream programming languages. It is often abbreviated as NUL. In 8-bit codes, it is known as a null byte.

In computer programming, a null-terminated string is a character string stored as an array containing the characters and terminated with a null character. Alternative names are C string, which refers to the C programming language and ASCIIZ.

A wide character is a computer character datatype that generally has a size greater than the traditional 8-bit character. The increased datatype size allows for the use of larger coded character sets.

Bencode is the encoding used by the peer-to-peer file sharing system BitTorrent for storing and transmitting loosely structured data.

This article compares Unicode encodings. Two situations are considered: 8-bit-clean environments, and environments that forbid use of byte values that have the high bit set. Originally such prohibitions were to allow for links that used only seven data bits, but they remain in some standards and so some standard-conforming software must generate messages that comply with the restrictions. Standard Compression Scheme for Unicode and Binary Ordered Compression for Unicode are excluded from the comparison tables because it is difficult to simply quantify their size.

The C++ programming language has support for string handling, mostly implemented in its standard library. The language standard specifies several string types, some inherited from C, some designed to make use of the language's features, such as classes and RAII. The most-used of these is std::string.

bcrypt is a password-hashing function designed by Niels Provos and David Mazières, based on the Blowfish cipher and presented at USENIX in 1999. Besides incorporating a salt to protect against rainbow table attacks, bcrypt is an adaptive function: over time, the iteration count can be increased to make it slower, so it remains resistant to brute-force search attacks even with increasing computation power.

The C programming language has a set of functions implementing operations on strings in its standard library. Various operations, such as copying, concatenation, tokenization and searching are supported. For character strings, the standard library uses the convention that strings are null-terminated: a string of n characters is represented as an array of n + 1 elements, the last of which is a "NUL character" with numeric value 0.

References

  1. "Introduction To Java – MFC 158 G". Archived from the original on 2016-03-03. String literals (or constants) are called 'anonymous strings'
  2. de St. Germain, H. James. "Strings". University of Utah, Kahlert School of Computing.
  3. Francis, David M.; Merk, Heather L. (November 14, 2019). "DNA as a Biochemical Entity and Data String".
  4. 1 2 3 Burchfield, R.W. (1986). "string". A Supplement to the Oxford English Dictionary. Oxford at the Clarendon Press.
  5. "string". The Oxford English Dictionary. Vol. X. Oxford at the Clarendon Press. 1933.
  6. "string (n.)". Online Etymology Dictionary.
  7. Whitney, William Dwight; Smith, Benjamin E. "string". The Century Dictionary. New York: The Century Company. p. 5994.
  8. "Old Union's Demise". Milwaukee Sentinel . January 11, 1898. p. 3.
  9. Lewis, C.I. (1918). A survey of symbolic logic. Berkeley: University of California Press. p. 355.
  10. Sammet, Jean E. (July 1972). "Programming Languages: History and Future" (PDF). Communications of the ACM. 15 (7). doi:10.1145/361454.361485. S2CID   2003242.
  11. Bryant, Randal E.; David, O'Hallaron (2003), Computer Systems: A Programmer's Perspective (2003 ed.), Upper Saddle River, NJ: Pearson Education, p. 40, ISBN   0-13-034074-X, archived from the original on 2007-08-06
  12. Wearmouth, Geoff. "An Assembly Listing of the ROM of the Sinclair ZX80". Archived from the original on August 15, 2015.{{cite web}}: CS1 maint: unfit URL (link)
  13. Allison, Dennis. "Design Notes for Tiny BASIC". Archived from the original on 2017-04-10.
  14. Charles Crowley. "Data Structures for Text Sequences" Archived 2016-03-04 at the Wayback Machine . Section "Introduction" Archived 2016-04-04 at the Wayback Machine .
  15. "strlcpy and strlcat - consistent, safe, string copy and concatenation." Archived 2016-03-13 at the Wayback Machine
  16. "A rant about strcpy, strncpy and strlcpy." Archived 2016-02-29 at the Wayback Machine
  17. Keith Thompson. "No, strncpy() is not a "safer" strcpy()". 2012.
  18. "The Prague Stringology Club". stringology.org. Archived from the original on 1 June 2015. Retrieved 23 May 2015.
  19. Evarts, Holly (18 March 2021). "Former Dean Zvi Galil Named a Top 10 Most Influential Computer Scientist in the Past Decade". Columbia Engineering. He invented the terms 'stringology,' which is a subfield of string algorithms,
  20. Crochemore, Maxime (2002). Jewels of stringology. Singapore. p. v. ISBN   981-02-4782-6. The term stringology is a popular nickname for string algorithms as well as for text algorithms.{{cite book}}: CS1 maint: location missing publisher (link)
  21. "Essential Perl". Archived from the original on 2012-04-21. Perl's most famous strength is in string manipulation with regular expressions.
  22. "x86 string instructions". Archived from the original on 2015-03-27.
  23. 1 2 Barbara H. Partee; Alice ter Meulen; Robert E. Wall (1990). Mathematical Methods in Linguistics. Kluwer.
  24. John E. Hopcroft, Jeffrey D. Ullman (1979). Introduction to Automata Theory, Languages, and Computation . Addison-Wesley. ISBN   0-201-02988-X. Here: sect.1.1, p.1