Memory address

Last updated
In a computer using virtual memory, accessing the location corresponding to a memory address may involve many levels. Paging.svg
In a computer using virtual memory, accessing the location corresponding to a memory address may involve many levels.

In computing, a memory address is a reference to a specific memory location used at various levels by software and hardware. Memory addresses are fixed-length sequences of digits conventionally displayed and manipulated as unsigned integers. Such numerical semantic bases itself upon features of CPU (such as the instruction pointer and incremental address registers), as well upon use of the memory like an array endorsed by various programming languages.



Physical addresses

A digital computer's main memory consists of many memory locations. Each memory location has a physical address which is a code. The CPU (or other device) can use the code to access the corresponding memory location. Generally only system software, i.e. the BIOS, operating systems, and some specialized utility programs (e.g., memory testers), address physical memory using machine code operands or processor registers, instructing the CPU to direct a hardware device, called the memory controller, to use the memory bus or system bus, or separate control, address and data busses, to execute the program's commands. The memory controllers' bus consists of a number of parallel lines, each represented by a binary digit (bit). The width of the bus, and thus the number of addressable storage units, and the number of bits in each unit, varies among computers.

Logical addresses

A computer program uses memory addresses to execute machine code, and to store and retrieve data. In early computers logical and physical addresses corresponded, but since the introduction of virtual memory most application programs do not have a knowledge of physical addresses. Rather, they address logical addresses , or virtual addresses, using the computer's memory management unit and operating system memory mapping; see below.

Unit of address resolution

Most modern computers are byte-addressable . Each address identifies a single byte (eight bits) of storage. Data larger than a single byte may be stored in a sequence of consecutive addresses. There exist word-addressable computers, where the minimal addressable storage unit is exactly the processor's word. For example, the Data General Nova minicomputer, and the Texas Instruments TMS9900 and National Semiconductor IMP-16 microcomputers used 16 bit words, and there were many 36-bit mainframe computers (e.g., PDP-10) which used 18-bit word addressing, not byte addressing, giving an address space of 218 36-bit words, approximately 1 megabyte of storage. The efficiency of addressing of memory depends on the bit size of the bus used for addresses – the more bits used, the more addresses are available to the computer. For example, an 8-bit-byte-addressable machine with a 20-bit address bus (e.g. Intel 8086) can address 220 (1,048,576) memory locations, or one MiB of memory, while a 32-bit bus (e.g. Intel 80386) addresses 232 (4,294,967,296) locations, or a 4 GiB address space. In contrast, a 36-bit word-addressable machine with an 18-bit address bus addresses only 218 (262,144) 36-bit locations (9,437,184 bits), equivalent to 1,179,648 8-bit bytes, or 1152 KB, or 1.125 MiB—slightly more than the 8086.

Some older computers (decimal computers), were decimal digit-addressable. For example, each address in the IBM 1620's magnetic-core memory identified a single six bit binary-coded decimal digit, consisting of a parity bit, flag bit and four numerical bits. The 1620 used 5-digit decimal addresses, so in theory the highest possible address was 99,999. In practice, the CPU supported 20,000 memory locations, and up to two optional external memory units could be added, each supporting 20,000 addresses, for a total of 60,000 (00000–59999).

Word size versus address size

Word size is a characteristic of computer architecture denoting the number of bits that a CPU can process at one time. Modern processors, including embedded systems, usually have a word size of 8, 16, 24, 32 or 64 bits; most current general-purpose computers use 32 or 64 bits. Many different sizes have been used historically, including 8, 9, 10, 12, 18, 24, 36, 39, 40, 48 and 60 bits.

Very often, when referring to the word size of a modern computer, one is also describing the size of address space on that computer. For instance, a computer said to be "32-bit" also usually allows 32-bit memory addresses; a byte-addressable 32-bit computer can address 232 = 4,294,967,296 bytes of memory, or 4 gibibytes (GiB). This allows one memory address to be efficiently stored in one word.

However, this does not always hold true. Computers can have memory addresses larger or smaller than their word size. For instance, many 8-bit processors, such as the MOS Technology 6502, supported 16-bit addresses— if not, they would have been limited to a mere 256 bytes of memory addressing. The 16-bit Intel 8088 and Intel 8086 supported 20-bit addressing via segmentation, allowing them to access 1 MiB rather than 64 KiB of memory. All Intel Pentium processors since the Pentium Pro include Physical Address Extensions (PAE) which support mapping 36-bit physical addresses to 32-bit virtual addresses. Many early processors held 2 addresses per word , such as 36-bit processors.

In theory, modern byte-addressable 64-bit computers can address 264 bytes (16 exbibytes), but in practice the amount of memory is limited by the CPU, the memory controller, or the printed circuit board design (e.g., number of physical memory connectors or amount of soldered-on memory).

Contents of each memory location

Each memory location in a stored-program computer holds a binary number or decimal number of some sort. Its interpretation, as data of some data type or as an instruction, and use are determined by the instructions which retrieve and manipulate it.

Some early programmers combined instructions and data in words as a way to save memory, when it was expensive: The Manchester Mark 1 had space in its 40-bit words to store little bits of data – its processor ignored a small section in the middle of a word – and that was often exploited as extra data storage.[ citation needed ] Self-replicating programs such as viruses treat themselves sometimes as data and sometimes as instructions. Self-modifying code is generally deprecated nowadays, as it makes testing and maintenance disproportionally difficult to the saving of a few bytes, and can also give incorrect results because of the compiler or processor's assumptions about the machine's state, but is still sometimes used deliberately, with great care.

Address space in application programming

In modern multitasking environment, an application process usually has in its address space (or spaces) chunks of memory of following types:

Some parts of address space may be not mapped at all.

Some systems have a "split" memory architecture where machine code, constants, and data are in different locations, and may have different address sized. For example, PIC18 microcontrollers have a 21-bit program counter to address machine code and constants in Flash memory, and 12-bit address registers to address data in SRAM.

Addressing schemes

A computer program can access an address given explicitly – in low-level programming this is usually called an absolute address, or sometimes a specific address, and is known as pointer data type in higher-level languages. But a program can also use relative address which specifies a location in relation to somewhere else (the base address ). There are many more indirect addressing modes.

Mapping logical addresses to physical and virtual memory also adds several levels of indirection; see below.

Memory models

Many programmers prefer to address memory such that there is no distinction between code space and data space (cf. above), as well as from physical and virtual memory (see below) — in other words, numerically identical pointers refer to exactly the same byte of RAM.

However, many early computers did not support such a flat memory model — in particular, Harvard architecture machines force program storage to be completely separate from data storage. Many modern DSPs (such as the Motorola 56000) have three separate storage areas — program storage, coefficient storage, and data storage. Some commonly used instructions fetch from all three areas simultaneously — fewer storage areas (even if there were the same total bytes of storage) would make those instructions run slower.

Memory models in x86 architecture

Early x86 computers use the segmented memory model addresses based on a combination of two numbers: a memory segment, and an offset within that segment.

Some segments are implicitly treated as code segments, dedicated for instructions, stack segments, or normal data segments. Although the usages are different, the segments do not have different memory protections reflecting this. In the flat memory model all segments (segment registers) are generally set to zero, and only offsets are variable.

See also

Related Research Articles

Intel 8080 8-bit microprocessor

The Intel 8080 ("eighty-eighty") is the second 8-bit microprocessor designed and manufactured by Intel. It first appeared in April 1974 and is an extended and enhanced variant of the earlier 8008 design, although without binary compatibility. The initial specified clock rate or frequency limit was 2 MHz, and with common instructions using 4, 5, 7, 10, or 11 cycles this meant that it operated at a typical speed of a few hundred thousand instructions per second. A faster variant 8080A-1 became available later with clock frequency limit up to 3.125 MHz.

Intel 8086 16-bit microprocessor

The 8086 is a 16-bit microprocessor chip designed by Intel between early 1976 and June 8, 1978, when it was released. The Intel 8088, released July 1, 1979, is a slightly modified chip with an external 8-bit data bus, and is notable as the processor used in the original IBM PC design.

Intel 8088

The Intel 8088 microprocessor is a variant of the Intel 8086. Introduced on June 1, 1979, the 8088 has an eight-bit external data bus instead of the 16-bit bus of the 8086. The 16-bit registers and the one megabyte address range are unchanged, however. In fact, according to the Intel documentation, the 8086 and 8088 have the same execution unit (EU)—only the bus interface unit (BIU) is different. The original IBM PC is based on the 8088, as are its clones. The Wang PC from Wang Laboratories uses the Intel 8086.

x86 Family of instruction set architectures

x86 is a family of instruction set architectures initially developed by Intel based on the Intel 8086 microprocessor and its 8088 variant. The 8086 was introduced in 1978 as a fully 16-bit extension of Intel's 8-bit 8080 microprocessor, with memory segmentation as a solution for addressing more memory than can be covered by a plain 16-bit address. The term "x86" came into being because the names of several successors to Intel's 8086 processor end in "86", including the 80186, 80286, 80386 and 80486 processors.

In computing, endianness is the order or sequence of bytes of a word of digital data in computer memory. Endianness is primarily expressed as big-endian (BE) or little-endian (LE). A big-endian system stores the most significant byte of a word at the smallest memory address and the least significant byte at the largest. A little-endian system, in contrast, stores the least-significant byte at the smallest address.

In computer architecture, 8-bit integers or other data units are those that are 8 bits wide. Also, 8-bit CPU and ALU architectures are those that are based on registers or data buses of that size. Memory addresses for 8-bit CPUs are generally larger than 8-bit, usually 16-bit, while they could in theory be 8-bit, and in some situations 8-bit addresses are also used with 16-bit addresses mainly used. '8-bit' is also a generation of microcomputers in which 8-bit microprocessors were the norm.

In computer architecture, 32-bit integers, memory addresses, or other data units are those that are 32 bits wide. Also, 32-bit CPU and ALU architectures are those that are based on registers, address buses, or data buses of that size. 32-bit microcomputers are computers in which 32-bit microprocessors are the norm.

x86 memory segmentation refers to the implementation of memory segmentation in the Intel x86 computer instruction set architecture. Segmentation was introduced on the Intel 8086 in 1978 as a way to allow programs to address more than 64 KB (65,536 bytes) of memory. The Intel 80286 introduced a second version of segmentation in 1982 that added support for virtual memory and memory protection. At this point the original model was renamed real mode, and the new version was named protected mode. The x86-64 architecture, introduced in 2003, has largely dropped support for segmentation in 64-bit mode.

In computing, protected mode, also called protected virtual address mode, is an operational mode of x86-compatible central processing units (CPUs). It allows system software to use features such as virtual memory, paging and safe multi-tasking designed to increase an operating system's control over application software.

A20 line Signal in the system bus of an x86-based computer system

The A20, or address line 20, is one of the electrical lines that make up the system bus of an x86-based computer system. The A20 line in particular is used to transmit the 21st bit on the address bus.

Intel iAPX 432

The iAPX 432 is a discontinued computer architecture introduced in 1981. It was Intel's first 32-bit processor design. The main processor of the architecture, the general data processor, is implemented as a set of two separate integrated circuits, due to technical limitations at the time. Although some early 8086, 80186 and 80286-based systems and manuals also used the iAPX prefix for marketing reasons, the iAPX 432 and the 8086 processor lines are completely separate designs with completely different instruction sets.

In computer architecture, 4-bit integers, or other data units are those that are 4 bits wide. Also, 4-bit CPU and ALU architectures are those that are based on registers, or data buses of that size. Memory addresses (and thus address buses) for 4-bit CPUs are generally much larger than 4-bit (since only 16 memory locations would be very restrictive), such as 12-bit or more, while they could in theory be 8-bit. A group of four bits is also called a nibble and has 24 = 16 possible values.

36-bit computing

In computer architecture, 36-bit integers, memory addresses, or other data units are those that are 36 bits wide. Also, 36-bit CPU and ALU architectures are those that are based on registers, address buses, or data buses of that size. 36-bit computers were popular in the early mainframe computer era from the 1950s through the early 1970s.

Intel 8087

The Intel 8087, announced in 1980, was the first x87 floating-point coprocessor for the 8086 line of microprocessors.

The zero page or base page is the block of memory at the very beginning of a computer's address space; that is, the page whose starting address is zero. The size of a page depends on the context, and the significance of zero page memory versus higher addressed memory is highly dependent on machine architecture. For example, the Motorola 6800 and MOS Technology 6502 processor families treat the first 256 bytes of memory specially, whereas many other processors do not.

Memory segmentation is an operating system memory management technique of division of a computer's primary memory into segments or sections. In a computer system using segmentation, a reference to a memory location includes a value that identifies a segment and an offset within that segment. Segments or sections are also used in object files of compiled programs when they are linked together into a program image and when the image is loaded into memory.

In computing, a word is the natural unit of data used by a particular processor design. A word is a fixed-sized piece of data handled as a unit by the instruction set or the hardware of the processor. The number of bits in a word is an important characteristic of any specific processor design or computer architecture.

The maximum random access memory (RAM) installed in any computer system is limited by hardware, software and economic factors. The hardware may have a limited number of address bus bits, limited by the processor package or design of the system. Some of the address space may be shared between RAM, peripherals, and read-only memory. In the case of a microcontroller with no external RAM, the size of the RAM array is limited by the size of the integrated circuit die. In a packaged system, only enough RAM may be provided for the system's required functions, with no provision for addition of memory after manufacture.

Each time Intel launched a new microprocessor, they simultaneously provided a System Development Kit (SDK) allowing engineers, university students, and others to familiarise themselves with the new processor's concepts and features. The SDK single-board computers allowed the user to enter object code from a keyboard or upload it through a communication port, and then test run the code. The SDK boards provided a system monitor ROM to operate the keyboard and other interfaces. Kits varied in their specific features but generally offered optional memory and interface configurations, a serial terminal link, audio cassette storage, and EPROM program memory. Intel's Intellec development system could download code to the SDK boards.

In computer architecture, 16-bit integers, memory addresses, or other data units are those that are 16 bits wide. Also, 16-bit CPU and ALU architectures are those that are based on registers, address buses, or data buses of that size. 16-bit microcomputers are computers in which 16-bit microprocessors were the norm.