Product type

Last updated

In programming languages and type theory, a product of types is another, compounded, type in a structure. The "operands" of the product are types, and the structure of a product type is determined by the fixed order of the operands in the product. An instance of a product type retains the fixed order, but otherwise may contain all possible instances of its primitive data types. The expression of an instance of a product type will be a tuple, and is called a "tuple type" of expression. A product of types is a direct product of two or more types.

If there are only two component types, it can be called a "pair type". For example, if two component types A and B are the set of all possible values of that type, the product type written A × B contains elements that are pairs (a,b), where "a" and "b" are instances of A and B respectively. The pair type is a special case of the dependent pair type, where the type B may depend on the instance picked from A.

In many languages, product types take the form of a record type, for which the components of a tuple can be accessed by label. In languages that have algebraic data types, as in most functional programming languages, algebraic data types with one constructor are isomorphic to a product type.

In the Curry–Howard correspondence, product types are associated with logical conjunction (AND) in logic.

The notion directly extends to the product of an arbitrary finite number of types (an n-ary product type), and in this case, it characterizes the expressions that behave as tuples of expressions of the corresponding types. A degenerate form of product type is the unit type: it is the product of no types.

In call-by-value programming languages, a product type can be interpreted as a set of pairs whose first component is a value in the first type and whose second component is a value in the second type. In short, it is a cartesian product and it corresponds to a product in the category of types.

Most functional programming languages have a primitive notion of product type. For instance, the product of type1, ..., typen is written type1*...*typen in ML and (type1,...,typen) in Haskell. In both these languages, tuples are written (v1,...,vn) and the components of a tuple are extracted by pattern-matching. Additionally, many functional programming languages provide more general algebraic data types, which extend both product and sum types. Product types are the dual of sum types.

See also

Related Research Articles

In mathematics and computer science, currying is the technique of translating a function that takes multiple arguments into a sequence of families of functions, each taking a single argument.

<span class="mw-page-title-main">Logical conjunction</span> Logical connective AND

In logic, mathematics and linguistics, and is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as or or (prefix) or or in which is the most modern and widely used.

In mathematics, a finitary relation over a sequence of sets X1, ..., Xn is a subset of the Cartesian product X1 × ... × Xn; that is, it is a set of n-tuples (x1, ..., xn), each being a sequence of elements xi in the corresponding Xi. Typically, the relation describes a possible connection between the elements of an n-tuple. For example, the relation "x is divisible by y and z" consists of the set of 3-tuples such that when substituted to x, y and z, respectively, make the sentence true.

A relational database (RDB) is a database based on the relational model of data, as proposed by E. F. Codd in 1970. A database management system used to maintain relational databases is a relational database management system (RDBMS). Many relational database systems are equipped with the option of using SQL for querying and updating the database.

The relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of tuples, grouped into relations. A database organized in terms of the relational model is a relational database.

In logic, mathematics, and computer science, arity is the number of arguments or operands taken by a function, operation or relation. In mathematics, arity may also be called rank, but this word can have many other meanings. In logic and philosophy, arity may also be called adicity and degree. In linguistics, it is usually named valency.

<span class="mw-page-title-main">Data type</span> Attribute of data

In computer science and computer programming, a data type is a collection or grouping of data values, usually specified by a set of possible values, a set of allowed operations on these values, and/or a representation of these values as machine types. A data type specification in a program constrains the possible values that an expression, such as a variable or a function call, might take. On literal data, it tells the compiler or interpreter how the programmer intends to use the data. Most programming languages support basic data types of integer numbers, floating-point numbers, characters and Booleans.

In mathematics, a tuple is a finite sequence or ordered list of numbers or, more generally, mathematical objects, which are called the elements of the tuple. An n-tuple is a tuple of n elements, where n is a non-negative integer. There is only one 0-tuple, called the empty tuple. A 1-tuple and a 2-tuple are commonly called a singleton and an ordered pair, respectively.

In database theory, relational algebra is a theory that uses algebraic structures for modeling data, and defining queries on it with well founded semantics. The theory was introduced by Edgar F. Codd.

In programming language theory and proof theory, the Curry–Howard correspondence is the direct relationship between computer programs and mathematical proofs.

In computer programming, especially functional programming and type theory, an algebraic data type (ADT) is a kind of composite type, i.e., a type formed by combining other types.

In logic, extensionality, or extensional equality, refers to principles that judge objects to be equal if they have the same external properties. It stands in contrast to the concept of intensionality, which is concerned with whether the internal definitions of objects are the same.

In computer programming, an assignment statement sets and/or re-sets the value stored in the storage location(s) denoted by a variable name; in other words, it copies a value into the variable. In most imperative programming languages, the assignment statement is a fundamental construct.

Intuitionistic type theory is a type theory and an alternative foundation of mathematics. Intuitionistic type theory was created by Per Martin-Löf, a Swedish mathematician and philosopher, who first published it in 1972. There are multiple versions of the type theory: Martin-Löf proposed both intensional and extensional variants of the theory and early impredicative versions, shown to be inconsistent by Girard's paradox, gave way to predicative versions. However, all versions keep the core design of constructive logic using dependent types.

In mathematics, an expression is a written arrangement of symbols following the context-dependent, syntactic conventions of mathematical notation. Symbols can denote numbers (constants), variables, operations, functions. Other symbols include punctuation signs and brackets.

The vertical bar, |, is a glyph with various uses in mathematics, computing, and typography. It has many names, often related to particular meanings: Sheffer stroke, pipe, bar, or, vbar, and others.

In computer science and logic, a dependent type is a type whose definition depends on a value. It is an overlapping feature of type theory and type systems. In intuitionistic type theory, dependent types are used to encode logic's quantifiers like "for all" and "there exists". In functional programming languages like Agda, ATS, Coq, F*, Epigram, Idris, and Lean, dependent types help reduce bugs by enabling the programmer to assign types that further restrain the set of possible implementations.

In functional programming, a generalized algebraic data type is a generalization of parametric algebraic data types.

OptimJ is an extension for Java with language support for writing optimization models and abstractions for bulk data processing. The extensions and the proprietary product implementing the extensions were developed by Ateji which went out of business in September 2011. OptimJ aims at providing a clear and concise algebraic notation for optimization modeling, removing compatibility barriers between optimization modeling and application programming tools, and bringing software engineering techniques such as object-orientation and modern IDE support to optimization experts.

In mathematics, equivalent definitions are used in two somewhat different ways. First, within a particular mathematical theory, a notion may have more than one definition. These definitions are equivalent in the context of a given mathematical structure. Second, a mathematical structure may have more than one definition.

References