Set (abstract data type)

Last updated

In computer science, a set is an abstract data type that can store unique values, without any particular order. It is a computer implementation of the mathematical concept of a finite set. Unlike most other collection types, rather than retrieving a specific element from a set, one typically tests a value for membership in a set.


Some set data structures are designed for static or frozen sets that do not change after they are constructed. Static sets allow only query operations on their elements — such as checking whether a given value is in the set, or enumerating the values in some arbitrary order. Other variants, called dynamic or mutable sets, allow also the insertion and deletion of elements from the set.

A multiset is a special kind of set in which an element can appear multiple times in the set.

Type theory

In type theory, sets are generally identified with their indicator function (characteristic function): accordingly, a set of values of type may be denoted by or . (Subtypes and subsets may be modeled by refinement types, and quotient sets may be replaced by setoids.) The characteristic function of a set is defined as:

In theory, many other abstract data structures can be viewed as set structures with additional operations and/or additional axioms imposed on the standard operations. For example, an abstract heap can be viewed as a set structure with a min(S) operation that returns the element of smallest value.


Core set-theoretical operations

One may define the operations of the algebra of sets:

Static sets

Typical operations that may be provided by a static set structure S are:

Dynamic sets

Dynamic set structures typically add:

Some set structures may allow only some of these operations. The cost of each operation will depend on the implementation, and possibly also on the particular values stored in the set, and the order in which they are inserted.

Additional operations

There are many other operations that can (in principle) be defined in terms of the above, such as:

Other operations can be defined for sets with elements of a special type:


Sets can be implemented using various data structures, which provide different time and space trade-offs for various operations. Some implementations are designed to improve the efficiency of very specialized operations, such as nearest or union. Implementations described as "general use" typically strive to optimize the element_of, add, and delete operations. A simple implementation is to use a list, ignoring the order of the elements and taking care to avoid repeated values. This is simple but inefficient, as operations like set membership or element deletion are O(n), as they require scanning the entire list. [lower-alpha 2] Sets are often instead implemented using more efficient data structures, particularly various flavors of trees, tries, or hash tables.

As sets can be interpreted as a kind of map (by the indicator function), sets are commonly implemented in the same way as (partial) maps (associative arrays) – in this case in which the value of each key-value pair has the unit type or a sentinel value (like 1) – namely, a self-balancing binary search tree for sorted sets[ definition needed ] (which has O(log n) for most operations), or a hash table for unsorted sets (which has O(1) average-case, but O(n) worst-case, for most operations). A sorted linear hash table [8] may be used to provide deterministically ordered sets.

Further, in languages that support maps but not sets, sets can be implemented in terms of maps. For example, a common programming idiom in Perl that converts an array to a hash whose values are the sentinel value 1, for use as a set, is:


Other popular methods include arrays. In particular a subset of the integers 1..n can be implemented efficiently as an n-bit bit array, which also support very efficient union and intersection operations. A Bloom map implements a set probabilistically, using a very compact representation but risking a small chance of false positives on queries.

The Boolean set operations can be implemented in terms of more elementary operations (pop, clear, and add), but specialized algorithms may yield lower asymptotic time bounds. If sets are implemented as sorted lists, for example, the naive algorithm for union(S,T) will take time proportional to the length m of S times the length n of T; whereas a variant of the list merging algorithm will do the job in time proportional to m+n. Moreover, there are specialized set data structures (such as the union-find data structure) that are optimized for one or more of these operations, at the expense of others.

Language support

One of the earliest languages to support sets was Pascal; many languages now include it, whether in the core language or in a standard library.

As noted in the previous section, in languages which do not directly support sets but do support associative arrays, sets can be emulated using associative arrays, by using the elements as keys, and using a dummy value as the values, which are ignored.


A generalization of the notion of a set is that of a multiset or bag, which is similar to a set but allows repeated ("equal") values (duplicates). This is used in two distinct senses: either equal values are considered identical, and are simply counted, or equal values are considered equivalent, and are stored as distinct items. For example, given a list of people (by name) and ages (in years), one could construct a multiset of ages, which simply counts the number of people of a given age. Alternatively, one can construct a multiset of people, where two people are considered equivalent if their ages are the same (but may be different people and have different names), in which case each pair (name, age) must be stored, and selecting on a given age gives all the people of a given age.

Formally, it is possible for objects in computer science to be considered "equal" under some equivalence relation but still distinct under another relation. Some types of multiset implementations will store distinct equal objects as separate items in the data structure; while others will collapse it down to one version (the first one encountered) and keep a positive integer count of the multiplicity of the element.

As with sets, multisets can naturally be implemented using hash table or trees, which yield different performance characteristics.

The set of all bags over type T is given by the expression bag T. If by multiset one considers equal items identical and simply counts them, then a multiset can be interpreted as a function from the input domain to the non-negative integers (natural numbers), generalizing the identification of a set with its indicator function. In some cases a multiset in this counting sense may be generalized to allow negative values, as in Python.

Where a multiset data structure is not available, a workaround is to use a regular set, but override the equality predicate of its items to always return "not equal" on distinct objects (however, such will still not be able to store multiple occurrences of the same object) or use an associative array mapping the values to their integer multiplicities (this will not be able to distinguish between equal elements at all).

Typical operations on bags:

Multisets in SQL

In relational databases, a table can be a (mathematical) set or a multiset, depending on the presence of unicity constraints on some columns (which turns it into a candidate key).

SQL allows the selection of rows from a relational table: this operation will in general yield a multiset, unless the keyword DISTINCT is used to force the rows to be all different, or the selection includes the primary (or a candidate) key.

In ANSI SQL the MULTISET keyword can be used to transform a subquery into a collection expression:


is a general select that can be used as subquery expression of another more general query, while


transforms the subquery into a collection expression that can be used in another query, or in assignment to a column of appropriate collection type.

See also


  1. For example, in Python pick can be implemented on a derived class of the built-in set as follows:
  2. Element insertion can be done in O(1) time by simply inserting at an end, but if one avoids duplicates this takes O(n) time.

Related Research Articles

In computer science, an array data structure, or simply an array, is a data structure consisting of a collection of elements, each identified by at least one array index or key. An array is stored such that the position of each element can be computed from its index tuple by a mathematical formula. The simplest type of data structure is a linear array, also called one-dimensional array.

<span class="mw-page-title-main">Binary search algorithm</span> Search algorithm finding the position of a target value within a sorted array

In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search algorithm that finds the position of a target value within a sorted array. Binary search compares the target value to the middle element of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found. If the search ends with the remaining half being empty, the target is not in the array.

Data structure Particular way of storing and organizing data in a computer

In computer science, a data structure is a data organization, management, and storage format that is usually chosen for efficient access to data. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, i.e., it is an algebraic structure about data.

<span class="mw-page-title-main">Hash table</span> Associative array for storing key–value pairs

In computing, a hash table, also known as hash map, is a data structure that implements an associative array or dictionary. It is an abstract data type that maps keys to values. A hash table uses a hash function to compute an index, also called a hash code, into an array of buckets or slots, from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored.

Heap (data structure) Computer science data structure

In computer science, a heap is a specialized tree-based data structure which is essentially an almost complete tree that satisfies the heap property: in a max heap, for any given node C, if P is a parent node of C, then the key of P is greater than or equal to the key of C. In a min heap, the key of P is less than or equal to the key of C. The node at the "top" of the heap is called the root node.

In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of pairs, such that each possible key appears at most once in the collection. In mathematical terms an associative array is a function with finite domain. It supports 'lookup', 'remove', and 'insert' operations.

The Standard Template Library (STL) is a software library originally designed by Alexander Stepanov for the C++ programming language that influenced many parts of the C++ Standard Library. It provides four components called algorithms, containers, functions, and iterators.

In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.

In computer programming, an iterator is an object that enables a programmer to traverse a container, particularly lists. Various types of iterators are often provided via a container's interface. Though the interface and semantics of a given iterator are fixed, iterators are often implemented in terms of the structures underlying a container implementation and are often tightly coupled to the container to enable the operational semantics of the iterator. An iterator performs traversal and also gives access to data elements in a container, but does not itself perform iteration.

In computer science, a list or sequence is an abstract data type that represents a finite number of ordered values, where the same value may occur more than once. An instance of a list is a computer representation of the mathematical concept of a tuple or finite sequence; the (potentially) infinite analog of a list is a stream. Lists are a basic example of containers, as they contain other values. If the same value occurs multiple times, each occurrence is considered a distinct item.

Foreach loop Control flow statement for traversing items in a collection

In computer programming, foreach loop is a control flow statement for traversing items in a collection. foreach is usually used in place of a standard for loop statement. Unlike other for loop constructs, however, foreach loops usually maintain no explicit counter: they essentially say "do this to everything in this set", rather than "do this x times". This avoids potential off-by-one errors and makes code simpler to read. In object-oriented languages, an iterator, even if implicit, is often used as the means of traversal.

In computer science, a multimap is a generalization of a map or associative array abstract data type in which more than one value may be associated with and returned for a given key. Both map and multimap are particular cases of containers. Often the multimap is implemented as a map with lists or sets as the map values.

Java collections framework

The Java collections framework is a set of classes and interfaces that implement commonly reusable collection data structures.

In computer programming, a collection is a grouping of some variable number of data items that have some shared significance to the problem being solved and need to be operated upon together in some controlled fashion. Generally, the data items will be of the same type or, in languages supporting inheritance, derived from some common ancestor type. A collection is a concept applicable to abstract data types, and does not prescribe a specific implementation as a concrete data structure, though often there is a conventional choice.

This Comparison of programming languages compares the features of associative array data structures or array-lookup processing for over 40 computer programming languages.

This comparison of programming languages (array) compares the features of array data structures or matrix processing for various computer programming languages.

In the programming language C++, unordered associative containers are a group of class templates in the C++ Standard Library that implement hash table variants. Being templates, they can be used to store arbitrary elements, such as integers or custom classes. The following containers are defined in the current revision of the C++ standard: unordered_set, unordered_map, unordered_multiset, unordered_multimap. Each of these containers differ only on constraints placed on their elements.

In computer science, an array type is a data type that represents a collection of elements, each selected by one or more indices that can be computed at run time during program execution. Such a collection is usually called an array variable, array value, or simply array. By analogy with the mathematical concepts vector and matrix, array types with one and two indices are often called vector type and matrix type, respectively. More generally, a multidimensional array type can be called a tensor type.

In computing, associative containers refer to a group of class templates in the standard library of the C++ programming language that implement ordered associative arrays. Being templates, they can be used to store arbitrary elements, such as integers or custom classes. The following containers are defined in the current revision of the C++ standard: set, map, multiset, multimap. Each of these containers differ only on constraints placed on their elements.


  1. Python: pop()
  2. Management and Processing of Complex Data Structures: Third Workshop on Information Systems and Artificial Intelligence, Hamburg, Germany, February 28 - March 2, 1994. Proceedings, ed. Kai v. Luck, Heinz Marburger, p. 76
  3. Python Issue7212: Retrieve an arbitrary element from a set without removing it; see msg106593 regarding standard name
  4. Ruby Feature #4553: Add Set#pick and Set#pop
  5. Inductive Synthesis of Functional Programs: Universal Planning, Folding of Finite Programs, and Schema Abstraction by Analogical Reasoning, Ute Schmid, Springer, Aug 21, 2003, p. 240
  6. Recent Trends in Data Type Specification: 10th Workshop on Specification of Abstract Data Types Joint with the 5th COMPASS Workshop, S. Margherita, Italy, May 30 - June 3, 1994. Selected Papers, Volume 10, ed. Egidio Astesiano, Gianna Reggio, Andrzej Tarlecki, p. 38
  7. Ruby: flatten()
  8. Wang, Thomas (1997), Sorted Linear Hash Table, archived from the original on 2006-01-12
  9. Stephen Adams, "Efficient sets: a balancing act", Journal of Functional Programming 3(4):553-562, October 1993. Retrieved on 2015-03-11.
  10. "ECMAScript 2015 Language Specification – ECMA-262 6th Edition". Retrieved 2017-07-11.