Plain text

Last updated • 8 min readFrom Wikipedia, The Free Encyclopedia

In computing, plain text is a loose term for data (e.g. file contents) that represent only characters of readable material but not its graphical representation nor other objects (floating-point numbers, images, etc.). It may also include a limited number of "whitespace" characters that affect simple arrangement of text, such as spaces, line breaks, or tabulation characters. Plain text is different from formatted text, where style information is included; from structured text, where structural parts of the document such as paragraphs, sections, and the like are identified; and from binary files in which some portions must be interpreted as binary objects (encoded integers, real numbers, images, etc.).

Contents

The term is sometimes used quite loosely, to mean files that contain only "readable" content (or just files with nothing that the speaker does not prefer). For example, that could exclude any indication of fonts or layout (such as markup, markdown, or even tabs); characters such as curly quotes, non-breaking spaces, soft hyphens, em dashes, and/or ligatures; or other things.

In principle, plain text can be in any encoding, but occasionally the term is taken to imply ASCII. As Unicode-based encodings such as UTF-8 and UTF-16 become more common, that usage may be shrinking.

Plain text is also sometimes used only to exclude "binary" files: those in which at least some parts of the file cannot be correctly interpreted via the character encoding in effect. For example, a file or string consisting of "hello" (in any encoding), following by 4 bytes that express a binary integer that is not a character, is a binary file. Converting a plain text file to a different character encoding does not change the meaning of the text, as long as the correct character encoding is used. However, converting a binary file to a different format may alter the interpretation of the non-textual data.

Plain text and rich text

According to The Unicode Standard: [1]

According to other definitions, however, files that contain markup or other meta-data are generally considered plain text, so long as the markup is also in a directly human-readable form (as in HTML, XML, and so on). Thus, representations such as SGML, RTF, HTML, XML, wiki markup, and TeX, as well as nearly all programming language source code files, are considered plain text. The particular content is irrelevant to whether a file is plain text. For example, an SVG file can express drawings or even bitmapped graphics, but is still plain text.

The use of plain text rather than binary files enables files to survive much better "in the wild", in part by making them largely immune to computer architecture incompatibilities. For example, all the problems of Endianness can be avoided (with encodings such as UCS-2 rather than UTF-8, endianness matters, but uniformly for every character, rather than for potentially-unknown subsets of it).

Usage

The purpose of using plain text today is primarily independence from programs that require their very own special encoding or formatting or file format. Plain text files can be opened, read, and edited with ubiquitous text editors and utilities.

A command-line interface allows people to give commands in plain text and get a response, also typically in plain text.

Many other computer programs are also capable of processing or creating plain text, such as countless programs in DOS, Windows, classic Mac OS, and Unix and its kin; as well as web browsers (a few browsers such as Lynx and the Line Mode Browser produce only plain text for display) and other e-text readers.

Plain text files are almost universal in programming; a source code file containing instructions in a programming language is almost always a plain text file. Plain text is also commonly used for configuration files, which are read for saved settings at the startup of a program.

Plain text is used for much e-mail.

A comment, a ".txt" file, or a TXT Record generally contains only plain text (without formatting) intended for humans to read.

The best format for storing knowledge persistently is plain text, rather than some binary format. [2]

Encoding

Character encodings

Before the early 1960s, computers were mainly used for number-crunching rather than for text, and memory was extremely expensive. Computers often allocated only 6 bits for each character, permitting only 64 characters—assigning codes for A-Z, a-z, and 0-9 would leave only 2 codes: nowhere near enough. Most computers opted not to support lower-case letters. Thus, early text projects such as Roberto Busa's Index Thomisticus, the Brown Corpus, and others had to resort to conventions such as keying an asterisk preceding letters actually intended to be upper-case.

Fred Brooks of IBM argued strongly for going to 8-bit bytes, because someday people might want to process text, and won. Although IBM used EBCDIC, most text from then on came to be encoded in ASCII, using values from 0 to 31 for (non-printing) control characters, and values from 32 to 127 for graphic characters such as letters, digits, and punctuation. Most machines stored characters in 8 bits rather than 7, ignoring the remaining bit or using it as a checksum.

The near-ubiquity of ASCII was a great help, but failed to address international and linguistic concerns. The dollar-sign ("$") was not as useful in England, and the accented characters used in Spanish, French, German, Portuguese, Italian and many other languages were entirely unavailable in ASCII (not to mention characters used in Greek, Russian, and most Eastern languages). Many individuals, companies, and countries defined extra characters as needed—often reassigning control characters, or using values in the range from 128 to 255. Using values above 128 conflicts with using the 8th bit as a checksum, but the checksum usage gradually died out.

These additional characters were encoded differently in different countries, making texts impossible to decode without figuring out the originator's rules. For instance, a browser might display ¬A rather than ` if it tried to interpret one character set as another. The International Organization for Standardization (ISO) eventually developed several code pages under ISO 8859, to accommodate various languages. The first of these (ISO 8859-1) is also known as "Latin-1", and covers the needs of most (not all) European languages that use Latin-based characters (there was not quite enough room to cover them all). ISO 2022 then provided conventions for "switching" between different character sets in mid-file. Many other organisations developed variations on these, and for many years Windows and Macintosh computers used incompatible variations.

The text-encoding situation became more and more complex, leading to efforts by ISO and by the Unicode Consortium to develop a single, unified character encoding that could cover all known (or at least all currently known) languages. After some conflict, [3] these efforts were unified. Unicode currently allows for 1,114,112 code values, and assigns codes covering nearly all modern text writing systems, as well as many historical ones, and for many non-linguistic characters such as printer's dingbats, mathematical symbols, etc.

Text is considered plain text regardless of its encoding. To properly understand or process it the recipient must know (or be able to figure out) what encoding was used; however, they need not know anything about the computer architecture that was used, or about the binary structures defined by whatever program (if any) created the data.

Perhaps the most common way of explicitly stating the specific encoding of plain text is with a MIME type. For email and HTTP, the default MIME type is "text/plain" -- plain text without markup. Another MIME type often used in both email and HTTP is "text/html; charset=UTF-8" -- plain text represented using the UTF-8 character encoding with HTML markup. Another common MIME type is "application/json" -- plain text represented using the UTF-8 character encoding with JSON markup.

When a document is received without any explicit indication of the character encoding, some applications use charset detection to attempt to guess what encoding was used.

Control codes

ASCII reserves the first 32 codes (numbers 0–31 decimal) for control characters known as the "C0 set": codes originally intended not to represent printable information, but rather to control devices (such as printers) that make use of ASCII, or to provide meta-information about data streams such as those stored on magnetic tape. They include common characters like the newline and the tab character.

In 8-bit character sets such as Latin-1 and the other ISO 8859 sets, the first 32 characters of the "upper half" (128 to 159) are also control codes, known as the "C1 set". They are rarely used directly; when they turn up in documents which are ostensibly in an ISO 8859 encoding, their code positions generally refer instead to the characters at that position in a proprietary, system-specific encoding, such as Windows-1252 or Mac OS Roman, that use the codes to instead provide additional graphic characters.

Unicode defines additional control characters, including bi-directional text direction override characters (used to explicitly mark right-to-left writing inside left-to-right writing and the other way around) and variation selectors to select alternate forms of CJK ideographs, emoji and other characters.

See also

Related Research Articles

<span class="mw-page-title-main">ASCII</span> American character encoding standard

ASCII, an acronym for American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. ASCII has just 128 code points, of which only 95 are printable characters, which severely limit its scope. The set of available punctuation had significant impact on the syntax of computer languages and text markup. ASCII hugely influenced the design of character sets used by modern computers, including Unicode which has over a million code points, but the first 128 of these are the same as ASCII.

<span class="mw-page-title-main">Character encoding</span> Using numbers to represent text characters

Character encoding is the process of assigning numbers to graphical characters, especially the written characters of human language, allowing them to be stored, transmitted, and transformed using computers. The numerical values that make up a character encoding are known as code points and collectively comprise a code space, a code page, or character map.

While Hypertext Markup Language (HTML) has been in use since 1991, HTML 4.0 from December 1997 was the first standardized version where international characters were given reasonably complete treatment. When an HTML document includes special characters outside the range of seven-bit ASCII, two goals are worth considering: the information's integrity, and universal browser display.

Extended Binary Coded Decimal Interchange Code is an eight-bit character encoding used mainly on IBM mainframe and IBM midrange computer operating systems. It descended from the code used with punched cards and the corresponding six-bit binary-coded decimal code used with most of IBM's computer peripherals of the late 1950s and early 1960s. It is supported by various non-IBM platforms, such as Fujitsu-Siemens' BS2000/OSD, OS-IV, MSP, and MSP-EX, the SDS Sigma series, Unisys VS/9, Unisys MCP and ICL VME.

<span class="mw-page-title-main">ISO/IEC 8859-1</span> Character encoding

ISO/IEC 8859-1:1998, Information technology—8-bit single-byte coded graphic character sets—Part 1: Latin alphabet No. 1, is part of the ISO/IEC 8859 series of ASCII-based standard character encodings, first edition published in 1987. ISO/IEC 8859-1 encodes what it refers to as "Latin alphabet no. 1", consisting of 191 characters from the Latin script. This character-encoding scheme is used throughout the Americas, Western Europe, Oceania, and much of Africa. It is the basis for some popular 8-bit character sets and the first two blocks of characters in Unicode.

ISO/IEC 8859 is a joint ISO and IEC series of standards for 8-bit character encodings. The series of standards consists of numbered parts, such as ISO/IEC 8859-1, ISO/IEC 8859-2, etc. There are 15 parts, excluding the abandoned ISO/IEC 8859-12. The ISO working group maintaining this series of standards has been disbanded.

Web pages authored using HyperText Markup Language (HTML) may contain multilingual text represented with the Unicode universal character set. Key to the relationship between Unicode and HTML is the relationship between the "document character set", which defines the set of characters that may be present in an HTML document and assigns numbers to them, and the "external character encoding", or "charset", used to encode a given document as a sequence of bytes.

UTF-8 is a character encoding standard used for electronic communication. Defined by the Unicode Standard, the name is derived from Unicode Transformation Format – 8-bit. Almost every webpage is stored in UTF-8.

The byte-order mark (BOM) is a particular usage of the special Unicode character code, U+FEFFZERO WIDTH NO-BREAK SPACE, whose appearance as a magic number at the start of a text stream can signal several things to a program reading the text:

<span class="mw-page-title-main">Mojibake</span> Garbled text as a result of incorrect character encodings

Mojibake is the garbled or gibberish text that is the result of text being decoded using an unintended character encoding. The result is a systematic replacement of symbols with completely unrelated ones, often from a different writing system.

A text file is a kind of computer file that is structured as a sequence of lines of electronic text. A text file exists stored as data within a computer file system.

In computer programming, Base64 is a group of binary-to-text encoding schemes that transforms binary data into a sequence of printable characters, limited to a set of 64 unique characters. More specifically, the source binary data is taken 6 bits at a time, then this group of 6 bits is mapped to one of 64 unique characters.

UTF-7 is an obsolete variable-length character encoding for representing Unicode text using a stream of ASCII characters. It was originally intended to provide a means of encoding Unicode text for use in Internet E-mail messages that was more efficient than the combination of UTF-8 with quoted-printable.

A numeric character reference (NCR) is a common markup construct used in SGML and SGML-derived markup languages such as HTML and XML. It consists of a short sequence of characters that, in turn, represents a single character. Since WebSgml, XML and HTML 4, the code points of the Universal Character Set (UCS) of Unicode are used. NCRs are typically used in order to represent characters that are not directly encodable in a particular document. When the document is interpreted by a markup-aware reader, each NCR is treated as if it were the character it represents.

In computing, formatted text, styled text, or rich text, as opposed to plain text, is digital text which has styling information beyond the minimum of semantic elements: colours, styles, sizes, and special features in HTML.

Many email clients now offer some support for Unicode. Some clients will automatically choose between a legacy encoding and Unicode depending on the mail's content, either automatically or when the user requests it.

Several 8-bit character sets (encodings) were designed for binary representation of common Western European languages, which use the Latin alphabet, a few additional letters and ones with precomposed diacritics, some punctuation, and various symbols. These character sets also happen to support many other languages such as Malay, Swahili, and Classical Latin.

This article compares Unicode encodings in two types of environments: 8-bit clean environments, and environments that forbid the use of byte values with the high bit set. Originally, such prohibitions allowed for links that used only seven data bits, but they remain in some standards and so some standard-conforming software must generate messages that comply with the restrictions. The Standard Compression Scheme for Unicode and the Binary Ordered Compression for Unicode are excluded from the comparison tables because it is difficult to simply quantify their size.

Windows code pages are sets of characters or code pages used in Microsoft Windows from the 1980s and 1990s. Windows code pages were gradually superseded when Unicode was implemented in Windows, although they are still supported both within Windows and other platforms, and still apply when Alt code shortcuts are used.

<span class="mw-page-title-main">Extended ASCII</span> Nickname for 8-bit ASCII-derived character sets

Extended ASCII is a repertoire of character encodings that include the original 96 ASCII character set, plus up to 128 additional characters. There is no formal definition of "extended ASCII", and even use of the term is sometimes criticized, because it can be mistakenly interpreted to mean that the American National Standards Institute (ANSI) had updated its ANSI X3.4-1986 standard to include more characters, or that the term identifies a single unambiguous encoding, neither of which is the case.

References

  1. "The Unicode Standard, version 14.0" (PDF). pp. 18–19.
  2. Andrew Hunt, David Thomas. "The Pragmatic Programmer". 1999. Chapter 14: "The Power of Plain Text". p. 73.
  3. "ISO/Unicode Merger: Ed Hart Memo". www.unicode.org. Retrieved 2024-10-21.