A unit of information is any unit of measure of digital data size. In digital computing, a unit of information is used to describe the capacity of a digital data storage device. In telecommunications, a unit of information is used to describe the throughput of a communication channel. In information theory, a unit of information is used to measure information contained in messages and the entropy of random variables.
Due to the need to work with data sizes that range from very small to very large, units of information cover a wide range of data sizes. Units are defined as multiples of a smaller unit except for the smallest unit which is based on convention and hardware design. Multiplier prefixes are used to describe relatively large sizes.
For binary hardware, by far the most common hardware today, the smallest unit is the bit, a portmanteau of binary digit, [1] which represents a value that is one of two possible values; typically shown as 0 and 1. The nibble, 4 bits, represents the value of a single hexadecimal digit. The byte, 8 bits, 2 nibbles, is possibly the most commonly known and used base unit to describe data size. The word is a size that varies by and has a special importance for a particular hardware context. On modern hardware, a word is typically 2, 4 or 8 bytes, but the size varies dramatically on older hardware. Larger sizes can be expressed as multiples of a base unit via SI metric prefixes (powers of ten) or the newer and generally more accurate IEC binary prefixes (powers of two).
Units of information |
Information-theoretic |
---|
Data storage |
Quantum information |
In 1928, Ralph Hartley observed a fundamental storage principle, [2] which was further formalized by Claude Shannon in 1945: the information that can be stored in a system is proportional to the logarithm of N possible states of that system, denoted logbN. Changing the base of the logarithm from b to a different number c has the effect of multiplying the value of the logarithm by a fixed constant, namely logcN = (logcb) logbN. Therefore, the choice of the base b determines the unit used to measure information. In particular, if b is a positive integer, then the unit is the amount of information that can be stored in a system with b possible states.
When b is 2, the unit is the shannon, equal to the information content of one "bit". A system with 8 possible states, for example, can store up to log2 8 = 3 bits of information. Other units that have been named include:
The trit, ban, and nat are rarely used to measure storage capacity; but the nat, in particular, is often used in information theory, because natural logarithms are mathematically more convenient than logarithms in other bases.
Several conventional names are used for collections or groups of bits.
Historically, a byte was the number of bits used to encode a character of text in the computer, which depended on computer hardware architecture, but today it almost always means eight bits – that is, an octet. An 8-bit byte can represent 256 (28) distinct values, such as non-negative integers from 0 to 255, or signed integers from −128 to 127. The IEEE 1541-2002 standard specifies "B" (upper case) as the symbol for byte (IEC 80000-13 uses "o" for octet in French, but also allows "B" in English). Bytes, or multiples thereof, are almost always used to specify the sizes of computer files and the capacity of storage units. Most modern computers and peripheral devices are designed to manipulate data in whole bytes or groups of bytes, rather than individual bits.
A group of four bits, or half a byte, is sometimes called a nibble, nybble or nyble. This unit is most often used in the context of hexadecimal number representations, since a nibble has the same number of possible values as one hexadecimal digit has. [7]
Computers usually manipulate bits in groups of a fixed size, conventionally called words . The number of bits in a word is usually defined by the size of the registers in the computer's CPU, or by the number of data bits that are fetched from its main memory in a single operation. In the IA-32 architecture more commonly known as x86-32, a word is 32 bits, but other past and current architectures use words with 4, 8, 9, 12, 13, 16, 18, 20, 21, 22, 24, 25, 29, 30, 31, 32, 33, 35, 36, 38, 39, 40, 42, 44, 48, 50, 52, 54, 56, 60, 64, 72 [8] bits or others.
Some machine instructions and computer number formats use two words (a "double word" or "dword"), or four words (a "quad word" or "quad").
Computer memory caches usually operate on blocks of memory that consist of several consecutive words. These units are customarily called cache blocks, or, in CPU caches, cache lines.
Virtual memory systems partition the computer's main storage into even larger units, traditionally called pages .
A unit for a large amount of data can be formed using either a metric or binary prefix with a base unit. For storage, the base unit is typically byte. For communication throughput, a base unit of bit is common. For example, using the metric kilo prefix, a kilobyte is 1000 bytes and a kilobit is 1000 bits.
Use of metric prefixes is common, but often inaccurate since binary storage hardware is organized with capacity that is a power of 2 – not 10 as the metric prefixes are. In the context of computing, the metric prefixes are often intended to mean something other than their normal meaning. For example, 'kilobyte' often refers to 1024 bytes even though the standard meaning of kilo is 1000. Also, 'mega' normally means one million, but in computing is often used to mean 220 = 1048576. The table below illustrates the differences between normal metric sizes and the intended size – the binary size.
Symbol | Prefix | Metric size | Binary size | Size difference |
---|---|---|---|---|
k | kilo | 1000 | 1024 | 2.40% |
M | mega | 10002 | 10242 | 4.86% |
G | giga | 10003 | 10243 | 7.37% |
T | tera | 10004 | 10244 | 9.95% |
P | peta | 10005 | 10245 | 12.59% |
E | exa | 10006 | 10246 | 15.29% |
Z | zetta | 10007 | 10247 | 18.06% |
Y | yotta | 10008 | 10248 | 20.89% |
R | ronna | 10009 | 10249 | 23.79% |
Q | quetta | 100010 | 102410 | 26.77% |
The International Electrotechnical Commission (IEC) issued a standard that introduces binary prefixes that accurately represent binary sizes without changing the meaning of the standard metric terms. Rather than based on powers of 1000, these are based on powers of 1024 which is a power of 2. [9]
Symbol | Prefix | Example | Size |
---|---|---|---|
Ki | kibi | kibibyte (KiB) | 210, 1024 |
Mi | mebi | mebibyte (MiB) | 220, 10242 |
Gi | gibi | gibibyte (GiB) | 230, 10243 |
Ti | tebi | tebibyte (TiB) | 240, 10244 |
Pi | pebi | pebibyte (PiB) | 250, 10245 |
Ei | exbi | exbibyte (EiB) | 260, 10246 |
Zi | zebi | zebibyte (ZiB) | 270, 10247 |
Yi | yobi | yobibyte (YiB) | 280, 10248 |
Ri | robi | robibyte (RiB) | 290, 10249 |
Qi | quebi | quebibyte (QiB) | 2100, 102410 |
The JEDEC memory standard JESD88F notes that the definitions of kilo (K), giga (G), and mega (M) based on powers of two are included only to reflect common usage, but are otherwise deprecated. [10]
Some notable unit names that are today obsolete or only used in limited contexts.
[...] The writing of an impulse would involve writing a dibit or two transitions arbitrarily closely together. [...]
[...] slab, Abk. aus syllable = Silbe, die kleinste adressierbare Informationseinheit für 12 bit zur Übertragung von zwei Alphazeichen oder drei numerischen Zeichen. (NCR) [...] Hardware: Datenstruktur: NCR 315-100 / NCR 315-RMC; Wortlänge: Silbe; Bits: 12; Bytes: –; Dezimalziffern: 3; Zeichen: 2; Gleitkommadarstellung: fest verdrahtet; Mantisse: 4 Silben; Exponent: 1 Silbe (11 Stellen + 1 Vorzeichen) [...] [ slab , abbr. for syllable = syllable, smallest addressable information unit for 12 bits for the transfer of two alphabetical characters or three numerical characters. (NCR) [...] Hardware: Data structure: NCR 315-100 / NCR 315-RMC; Word length: Syllable; Bits: 12; Bytes: –; Decimal digits: 3; Characters: 2; Floating point format: hard-wired; Significand: 4 syllables; Exponent: 1 syllable (11 digits + 1 prefix)]
[...] Bit – The smallest unit of information which can be represented. (A bit may be in one of two states I 0 or 1). [...] Byte – A group of 8 contiguous bits occupying a single memory location. [...] Character – A group of 4 contiguous bits of data. [...] programs are held in either ROM or program RAM, both of which are divided into pages. Each page consists of 256 8-bit locations. Addresses 0 through 255 comprise the first page, 256-511 comprise the second page, and so on. [...](NB. This Intel 4004 manual uses the term character referring to 4-bit rather than 8-bit data entities. Intel switched to use the more common term nibble for 4-bit entities in their documentation for the succeeding processor 4040 in 1974 already.)