ITRON project

Last updated

The ITRON project is the first of several sub-architectures of the TRON project.

Contents

Originally undertaken in 1984, ITRON is a Japanese open standard for a real-time operating system (RTOS) initiated under the guidance of Ken Sakamura. This project aims to standardize the RTOS and related specifications for embedded systems, particularly small-scale embedded systems. The ITRON RTOS is targeted for consumer electronic devices, such as mobile phones and fax machines. Various vendors sell their own implementations of the RTOS.

Details

ITRON, and µITRON (sometimes also spelled uITRON or microITRON) are the name of RTOS specifications coming out of ITRON projects. 'µ' means that the particular specification is meant for the smaller 8-bit or 16-bit CPU targets. Specifications are available for free. Commercial implementations are available, and offered under many different licenses. On 10 November 2017, the Institute of Electrical and Electronics Engineers acquired ownership of the 16- and 32- bit uITRON from TRON Forum. [1]

A few sample sources exist, and there are many commercial source offerings, too.

Examples of open source RTOSes incorporating an API based on µITRON specification are eCos and RTEMS.

ITRON specification is meant for hard real-time embedded RTOS.

It is very popular in the embedded market, as there are many applications for it, i.e., devices with the OS embedded inside.

For example, there is an ACM Queue interview with Jim Ready, founder of MontaVista (realtime linux company), "Interview with Jim Reddy", April 2003, ACM Queue. [2] He says in the interview, "The single, most successful RTOS in Japan historically is µITRON. This is an indigenous open specification led by Dr. Ken Sakamura of the University of Tokyo. It is an industry standard there." Many Japanese digital cameras, for example, have use ITRON specification OS. Toyota automobile has used ITRON specification OS for engine control.

Supported CPUs are numerous. ARM, MIPS, x86, SH FR-V and many others including CPUs supported by open source RTOS eCos and RTEMS, both of which include the support for µITRON compatible APIs.

ITRON's popularity comes from many factors, but one factor is the notion of "loose standardization": the API specification is at the source level, and does not specify binary API compatibility. This makes it possible for implementers to make use of features of the particular CPU model to which the implementation is targeted. The developer even has the freedom of choosing to pass the parameters using a consolidated packet, or separate parameters to API (system call, library call, etc.). Such freedom is important to make the best use of not so powerful 8-bit or 16-bit CPUs. This makes keeping the binary compatibility among different implementations impossible. This led to the development of T-Kernel in the 2000s in order to promote binary compatibility for middleware distribution.

ITRON specification promotion was done by the various companies which sell the commercial implementations. There was also an NPO TRON Association [3] that promoted the specification by publishing it as well as other TRON specification OSes. But since the first quarter of 2010, it has become part of T-Engine Forum, [4] another non-profit organization that promotes other operating system such as the next generation RTOS, T-Kernel.

T-Kernel is the name of the specification and at the same time refers to the single implementation based on the authorized source code available from T-Engine Forum for free under T-License. So T-Kernel doesn't suffer from the binary API compatibility.

JTRON (Java TRON) is a sub-project of ITRON to allow it to use the Java platform.

See also

Related Research Articles

<span class="mw-page-title-main">PowerPC</span> RISC instruction set architecture by AIM alliance

PowerPC is a reduced instruction set computer (RISC) instruction set architecture (ISA) created by the 1991 Apple–IBM–Motorola alliance, known as AIM. PowerPC, as an evolving instruction set, has been named Power ISA since 2006, while the old name lives on as a trademark for some implementations of Power Architecture–based processors.

L4 is a family of second-generation microkernels, used to implement a variety of types of operating systems (OS), though mostly for Unix-like, Portable Operating System Interface (POSIX) compliant types.

OSEK is a standards body that has produced specifications for an embedded operating system, a communications stack, and a network management protocol for automotive embedded systems. It has produced related specifications, namely AUTOSAR. OSEK was designed to provide a reliable standard software architecture for the various electronic control units (ECUs) throughout a car.

Ken Sakamura, as of April 2017, is a Japanese professor and dean of the Faculty of Information Networking for Innovation and Design at Toyo University, Japan. He is a former professor in information science at the University of Tokyo. He is the creator of the real-time operating system (RTOS) architecture TRON.

TRON is an open architecture real-time operating system kernel design. The project was started by Professor Dr. Ken Sakamura of the University of Tokyo in 1984. The project's goal is to create an ideal computer architecture and network, to provide for all of society's needs.

<span class="mw-page-title-main">UEFI</span> Operating system firmware specification

UEFI is a set of specifications written by the UEFI Forum. They define the architecture of the platform firmware used for booting and its interface for interaction with the operating system. Examples of firmware that implement these specifications are AMI Aptio, Phoenix SecureCore Tiano, TianoCore EDK II and InsydeH2O.

Micro-Controller Operating Systems is a real-time operating system (RTOS) designed by Jean J. Labrosse in 1991. It is a priority-based preemptive real-time kernel for microprocessors, written mostly in the programming language C. It is intended for use in embedded systems.

Nios II is a 32-bit embedded processor architecture designed specifically for the Altera family of field-programmable gate array (FPGA) integrated circuits. Nios II incorporates many enhancements over the original Nios architecture, making it more suitable for a wider range of embedded computing applications, from digital signal processing (DSP) to system-control.

V850 is a 32-bit RISC CPU architecture produced by Renesas Electronics for embedded microcontrollers. It was designed by NEC as a replacement for their earlier NEC V60 family, and was introduced shortly before NEC sold their designs to Renesas in the early 1990s. It has continued to be developed by Renesas as of 2018.

<span class="mw-page-title-main">RTEMS</span> Real-time operating system

Real-Time Executive for Multiprocessor Systems (RTEMS), formerly Real-Time Executive for Missile Systems, and then Real-Time Executive for Military Systems, is a real-time operating system (RTOS) designed for embedded systems. It is free and open-source software.

<span class="mw-page-title-main">PikeOS</span> Real-time operating system

PikeOS is a commercial, hard real-time operating system (RTOS) that offers a separation kernel based hypervisor with multiple logical partition types for many other operating systems (OS), each called a GuestOS, and applications. It enables users to build certifiable smart devices for the Internet of things (IoT) according to the high quality, safety and security standards of different industries. For safety and security critical real-time applications on controller-based systems without memory management unit (MMU) but with memory protection unit (MPU) PikeOS for MPU is available.

BTRON is one of the subprojects of the TRON Project proposed by Ken Sakamura, which is responsible for the business phase. It refers to the operating systems (OS), keyboards, peripheral interface specifications, and other items related to personal computers (PCs) that were developed there.

LatticeMico32 is a 32-bit microprocessor reduced instruction set computer (RISC) soft core from Lattice Semiconductor optimized for field-programmable gate arrays (FPGAs). It uses a Harvard architecture, which means the instruction and data buses are separate. Bus arbitration logic can be used to combine the two buses, if desired.

<span class="mw-page-title-main">Micro T-Kernel</span> Real-time operating system for microcontrollers

μT-Kernel is a real-time operating system (RTOS) designed for 16- and 8-bit microcontrollers. μT-Kernel was standardized by T-Engine Forum and later by the Institute of Electrical and Electronics Engineers (IEEE) IEEE Standards Association as the basis of IEEE 2050-2018.

Binary-code compatibility is a property of a computer system, meaning that it can run the same executable code, typically machine code for a general-purpose computer CPU, that another computer system can run. Source-code compatibility, on the other hand, means that recompilation or interpretation is necessary before the program can be run on the compatible system.

LynxSecure is a least privilege real-time separation kernel hypervisor from Lynx Software Technologies designed for safety and security critical applications found in military, avionic, industrial, and automotive markets.

<span class="mw-page-title-main">T-Kernel</span>

T-Kernel is an open source real-time operating system (RTOS) designed for 32-bit microcontrollers. It is standardized by the T-Engine Forum, which distributes it under a T-License agreement. There is also a corresponding Micro T-Kernel (μT-Kernel) implementation designed for embedded systems with 16-bit or 8-bit microcontrollers.

T-Engine Forum is a non-profit organization which develops an open standard for real time embedded system development and to develop ubiquitous computing environment. They develop open specifications for ITRON, T-Kernel and ubiquitous ID architecture. The chair of T-Engine Forum is Dr. Ken Sakamura.

wolfSSH is a small, portable, embedded SSH library targeted for use by embedded systems developers. It is an open-source implementation of SSH written in the C language. It includes SSH client libraries and an SSH server implementation. It allows for password and public key authentication.

References

  1. "IEEE Standards Association (IEEE-SA) and TRON Forum Sign Agreement to Advance IoT Development and Interoperability". www.tron.org. Retrieved 2019-10-02.
  2. "Interview - ACM Queue". queue.acm.org.
  3. "TRON Forum". www.tron.org.
  4. "The name of T-Engine Forum was changed to TRON Forum". www.t-engine.org.