VAX

Last updated

VAX
VAX logo.svg
Designer Digital Equipment Corporation
Bits32-bit
Introduced1977;47 years ago (1977)
Design CISC
Type
  • Register–register
  • Register–memory
  • Memory–memory
Encoding Variable (1 to 56 bytes)
Branching Condition code
Endianness Little
Page size512 bytes
ExtensionsPDP-11 compatibility mode, VAX Vector Extensions, [1] VAX Virtualization Extensions [2]
OpenNo
Predecessor PDP-11
Successor Alpha
Registers
General-purpose 16 × 32-bit
Floating point not present, uses the GPR
Vector 16 × 4096-bit (64 elements of 64 bits each)

VAX (an acronym for Virtual Address eXtension) is a series of computers featuring a 32-bit instruction set architecture (ISA) and virtual memory that was developed and sold by Digital Equipment Corporation (DEC) in the late 20th century. The VAX-11/780, introduced October 25, 1977, was the first of a range of popular and influential computers implementing the VAX ISA. The VAX family was a huge success for DEC, with the last members arriving in the early 1990s. The VAX was succeeded by the DEC Alpha, which included several features from VAX machines to make porting from the VAX easier.

Contents

VAX was designed as a successor to the 16-bit PDP-11, one of the most successful minicomputers in history with approximately 600,000 units sold. The system was designed to offer backward compatibility with the PDP-11 while extending the memory to a full 32-bit implementation and adding demand paged virtual memory. The name VAX refers to its Virtual Address eXtension concept that allowed programs to make use of this newly available memory while still being compatible with unmodified user mode PDP-11 code. The name "VAX-11", used on early models, was chosen to highlight this capability. The VAX ISA is considered a complex instruction set computer (CISC) design.

DEC quickly dropped the −11 branding as PDP-11 compatibility was no longer a major concern. The line expanded to both high-end mainframes like the VAX 9000 as well as to the workstation-scale systems like the VAXstation series. The VAX family ultimately contained ten distinct designs and over 100 individual models in total. All of them were compatible with each other and normally ran the VAX/VMS operating system.

VAX has been perceived as the quintessential CISC ISA, [3] with its very large number of assembly language programmer-friendly addressing modes and machine instructions, highly orthogonal instruction set architecture, and instructions for complex operations such as queue insertion or deletion, number formatting, and polynomial evaluation. [4]

Name

VAX-11/780 VAX 11-780 intero.jpg
VAX-11/780

The name "VAX" originated as an acronym for Virtual Address eXtension, both because the VAX was seen as a 32-bit extension of the older 16-bit PDP-11 and because it was (after Prime Computer) an early adopter of virtual memory to manage this larger address space.

Early versions of the VAX processor implement a "compatibility mode" that emulates many of the PDP-11's instructions, giving it the 11 in VAX-11 to highlight this compatibility. Later versions offloaded the compatibility mode and some of the less used CISC instructions to emulation in the operating system software.

Instruction set

The VAX instruction set was designed to be powerful and orthogonal. [5] When it was introduced, many programs were written in assembly language, so having a "programmer-friendly" instruction set was important. [6] [7] In time, as more programs were written in high-level programming languages, the instruction set became less visible, and the only ones much concerned about it were compiler writers.

One unusual aspect of the VAX instruction set is the presence of register masks [8] at the start of each subprogram. These are arbitrary bit patterns that specify, when control is passed to the subprogram, which registers are to be preserved. On most architectures, it is up to the compiler to produce instructions to save out the needed data, typically using the call stack for temporary storage. On the VAX, with 16 registers, this might require 16 instructions to save the data and another 16 to restore it. Using the mask, a single 16-bit value performs the same operations internally in hardware, saving time and memory. [5]

Since register masks are a form of data embedded within the executable code, they can make linear parsing of the machine code difficult. This can complicate optimization techniques that are applied on machine code. [9]

Operating systems

Stylized "VAX/VMS" used by Digital VAX VMS logo.svg
Stylized "VAX/VMS" used by Digital

The native VAX operating system is Digital's VAX/VMS (renamed to OpenVMS in 1991 or early 1992 when it was ported to Alpha, modified to comply with POSIX standards, and branded as compliant with XPG4 by the X/Open consortium). [10] The VAX architecture and VMS operating system were "engineered concurrently" to take maximum advantage of each other, as was the initial implementation of the VAXcluster facility.

During the 1980s, a hypervisor for the VAX architecture named VMM (Virtual Machine Monitor), also known as the VAX Security Kernel, was developed at Digital with the aim of allowing multiple isolated instances of VMS and ULTRIX to be run on the same hardware. [11] VMM was intended to achieve TCSEC A1 compliance. By the late 1980s, it was operational on VAX 8000 series hardware, but was abandoned before release to customers.

Other VAX operating systems have included various releases of Berkeley Software Distribution (BSD) UNIX up to 4.3BSD, Ultrix-32, VAXELN, and Xinu. More recently, NetBSD [12] and OpenBSD [13] have supported various VAX models and some work has been done on porting Linux to the VAX architecture. [14] OpenBSD discontinued support for the architecture in September 2016. [15]

History

VAX 8350 front view with cover removed DEC-VAX-8350-front-0a.jpg
VAX 8350 front view with cover removed

The first VAX model sold was the VAX-11/780, which was introduced on October 25, 1977, at the Digital Equipment Corporation's Annual Meeting of Shareholders. [16] Bill Strecker, C. Gordon Bell's doctoral student at Carnegie Mellon University, was responsible for the architecture. [17] Many different models with different prices, performance levels, and capacities were subsequently created. VAX superminicomputers were very popular in the early 1980s.

For a while the VAX-11/780 was used as a standard in CPU benchmarks. It was initially described as a one-MIPS machine, because its performance was equivalent to an IBM System/360 that ran at one MIPS, and the System/360 implementations had previously been de facto performance standards. The actual number of instructions executed in 1 second was about 500,000, which led to complaints of marketing exaggeration. The result was the definition of a "VAX MIPS", the speed of a VAX-11/780; a computer performing at 27 VAX MIPS would run the same program roughly 27 times faster than the VAX-11/780.

Within the Digital community the term VUP (VAX Unit of Performance) was the more common term, because MIPS do not compare well across different architectures. The related term cluster VUPs was informally used to describe the aggregate performance of a VAXcluster. (The performance of the VAX-11/780 still serves as the baseline metric in the BRL-CAD Benchmark, a performance analysis suite included in the BRL-CAD solid modeling software distribution.) The VAX-11/780 included a subordinate stand-alone LSI-11 computer that performed microcode load, booting, and diagnostic functions for the parent computer. This was dropped from subsequent VAX models. Enterprising VAX-11/780 users could therefore run three different Digital Equipment Corporation operating systems: VMS on the VAX processor (from the hard drives), and either RSX-11S or RT-11 on the LSI-11 (from the single density single drive floppy disk).

The VAX went through many different implementations. The original VAX 11/780 was implemented in TTL and filled a four-by-five-foot cabinet [18] with a single CPU. Through the 1980s, the high-end of the family was continually improved using ever-faster discrete components, an evolution that ended with the introduction of the VAX 9000 in October 1989. This design proved too complex and expensive and was ultimately abandoned not long after introduction. CPU implementations that consisted of multiple emitter-coupled logic (ECL) gate array or macrocell array chips included the VAX 8600 and 8800 superminis and finally the VAX 9000 mainframe class machines. CPU implementations that consisted of multiple MOSFET custom chips included the 8100 and 8200 class machines. The VAX 11-730 and 725 low-end machines were built using AMD Am2901 bit-slice components for the ALU.

The MicroVAX I represented a major transition within the VAX family. At the time of its design, it was not yet possible to implement the full VAX architecture as a single VLSI chip (or even a few VLSI chips as was later done with the V-11 CPU of the VAX 8200/8300). Instead, the MicroVAX I was the first VAX implementation to move some of the more complex VAX instructions (such as the packed decimal and related opcodes) into emulation software. This partitioning substantially reduced the amount of microcode required and was referred to as the "MicroVAX" architecture. In the MicroVAX I, the ALU and registers were implemented as a single gate-array chip while the rest of the machine control was conventional logic.

A full VLSI (microprocessor) implementation of the MicroVAX architecture arrived with the MicroVAX II's 78032 (or DC333) CPU and 78132 (DC335) FPU. The 78032 was the first microprocessor with an on-board memory management unit [19] The MicroVAX II was based on a single, quad-sized processor board which carried the processor chips and ran the MicroVMS or Ultrix-32 operating systems. The machine featured 1 MB of on-board memory and a Q22-bus interface with DMA transfers. The MicroVAX II was succeeded by many further MicroVAX models with much improved performance and memory.

Further VLSI VAX processors followed in the form of the V-11, CVAX, CVAX SOC ("System On Chip", a single-chip CVAX), Rigel, Mariah and NVAX implementations. The VAX microprocessors extended the architecture to inexpensive workstations and later also supplanted the high-end VAX models. This wide range of platforms (mainframe to workstation) using one architecture was unique in the computer industry at that time. Sundry graphics were etched onto the CVAX microprocessor die. The phrase CVAX... when you care enough to steal the very best was etched in broken Russian as a play on a Hallmark Cards slogan, intended as a message to Soviet engineers who were known to be both purloining DEC computers for military applications and reverse engineering their chip design. [20] [21] By the late 1980s, the VAX microprocessors had grown in power to be competitive with discrete designs. This led to the abandonment of the 8000 and 9000 series and their replacement by Rigel-powered models of the VAX 6000, and later by NVAX-powered VAX 7000 systems.

In DEC's product offerings, the VAX architecture was eventually superseded by RISC technology. In 1989 DEC introduced a range of workstations and servers that ran Ultrix, the DECstation and DECsystem respectively, using processors from MIPS Computer Systems. In 1992 DEC introduced their own RISC instruction set architecture, the Alpha AXP (later renamed Alpha), and their own Alpha-based microprocessor, the DECchip 21064, a high performance 64-bit design capable of running OpenVMS.

In August 2000, Compaq announced that the remaining VAX models would be discontinued by the end of the year, [22] but old systems remain in widespread use. [23] The Stromasys CHARON-VAX and SIMH software-based VAX emulators remain available. VMS is now developed by VMS Software Incorporated, albeit only for the Alpha, HPE Integrity, and x86-64 platforms.

Processor architecture

MicroVAX 3600 (left) with printer (right) Microvax 3600 (2).jpg
MicroVAX 3600 (left) with printer (right)

Virtual memory map

The VAX virtual memory is divided into four sections. Each is one gigabyte (in the context of addressing, 230 bytes) in size:

SectionAddress range
P00x000000000x3fffffff
P10x400000000x7fffffff
S00x800000000xbfffffff
S10xc00000000xffffffff

For VMS, P0 was used for user process space, P1 for process stack, S0 for the operating system, and S1 was reserved.

Privilege modes

The VAX has four hardware implemented privilege modes:

No.ModeVMS useNotes
0KernelOS kernelHighest privilege level
1Executive File system
2SupervisorShell (DCL)
3UserNormal programsLowest privilege level

Processor status longword

The process status longword contains 32 bits:

CMTPMBZFDIScmodpmodMBZIPLMBZDVFUIVTNZVC
313029:28272625:2423:222120:1615:876543210
BitsMeaningBitsMeaning
31PDP-11 compatibility mode15:8MBZ (must be zero)
30trace pending7decimal overflow trap enable
29:28MBZ (must be zero)6floating-point underflow trap enable
27first part done (interrupted instruction)5 integer overflow trap enable
26interrupt stack4trace
25:24current privilege mode3negative
23:22previous privilege mode2zero
21MBZ (must be zero)1overflow
20:16IPL (interrupt priority level)0carry

VAX-based systems

The SPEC-1 VAX, a VAX 11/780 used for benchmarking, showing internals SPEC-1 VAX 05.jpg
The SPEC-1 VAX, a VAX 11/780 used for benchmarking, showing internals

The first VAX-based system was the VAX-11/780, a member of the VAX-11 family. The high-end VAX 8600 replaced the VAX-11/780 in October 1984 and was joined by the entry-level MicroVAX minicomputers and the VAXstation workstations in the mid-1980s. The MicroVAX was superseded by the VAX 4000, the VAX 8000 was superseded by the VAX 6000 in the late 1980s and the mainframe-class VAX 9000 was introduced. In the early 1990s, the fault-tolerant VAXft was introduced, as were the Alpha compatible VAX 7000/10000. A variant of various VAX-based systems were sold as the VAXserver.

SImultaneous Machine ACceSs (SIMACS)

System Industries developed an ability to give more than one DEC CPU, but not at the same time, write access to a shared disk. They implemented an enhancement named SImultaneous Machine ACceSs (SIMACS), [24] [25] which allowed their special disk controller to set a semaphore flag for disk access, allowing multiple WRITES to the same files; the disk is shared by multiple DEC systems. SIMACS also existed on PDP-11 RSTS systems.

Canceled systems

Canceled systems include the BVAX, a high-end emitter-coupled logic (ECL) based VAX, and two other ECL-based VAX models: Argonaut and Raven. [26] Raven was canceled in 1990. [27] A VAX named Gemini was also canceled, which was a fall-back in case the LSI-based Scorpio failed. It never shipped.

Clones

A number of VAX clones, both authorized and unauthorized, were produced. Examples include:

Related Research Articles

<span class="mw-page-title-main">Digital Equipment Corporation</span> U.S. computer manufacturer 1957–1998

Digital Equipment Corporation, using the trademark Digital, was a major American company in the computer industry from the 1960s to the 1990s. The company was co-founded by Ken Olsen and Harlan Anderson in 1957. Olsen was president until he was forced to resign in 1992, after the company had gone into precipitous decline.

<span class="mw-page-title-main">DEC Alpha</span> 64-bit RISC instruction set architecture

Alpha is a 64-bit reduced instruction set computer (RISC) instruction set architecture (ISA) developed by Digital Equipment Corporation (DEC). Alpha was designed to replace 32-bit VAX complex instruction set computers (CISC) and to be a highly competitive RISC processor for Unix workstations and similar markets.

In processor design, microcode serves as an intermediary layer situated between the central processing unit (CPU) hardware and the programmer-visible instruction set architecture of a computer, also known as its machine code. It consists of a set of hardware-level instructions that implement the higher-level machine code instructions or control internal finite-state machine sequencing in many digital processing components. While microcode is utilized in general-purpose CPUs in contemporary desktops, it also functions as a fallback path for scenarios that the faster hardwired control unit is unable to manage.

<span class="mw-page-title-main">Minicomputer</span> Mid-1960s–late-1980s class of smaller computers

A minicomputer, or colloquially mini, is a type of smaller general-purpose computer developed in the mid-1960s and sold at a much lower price than mainframe and mid-size computers from IBM and its direct competitors. In a 1970 survey, The New York Times suggested a consensus definition of a minicomputer as a machine costing less than US$25,000, with an input-output device such as a teleprinter and at least four thousand words of memory, that is capable of running programs in a higher level language, such as Fortran or BASIC.

<span class="mw-page-title-main">PDP-11</span> Series of 16-bit minicomputers

The PDP–11 is a series of 16-bit minicomputers sold by Digital Equipment Corporation (DEC) from 1970 into the late 1990s, one of a set of products in the Programmed Data Processor (PDP) series. In total, around 600,000 PDP-11s of all models were sold, making it one of DEC's most successful product lines. The PDP-11 is considered by some experts to be the most popular minicomputer.

The 88000 is a RISC instruction set architecture developed by Motorola during the 1980s. The MC88100 arrived on the market in 1988, some two years after the competing SPARC and MIPS. Due to the late start and extensive delays releasing the second-generation MC88110, the m88k achieved very limited success outside of the MVME platform and embedded controller environments. When Motorola joined the AIM alliance in 1991 to develop the PowerPC, further development of the 88000 ended.

In computer architecture, 64-bit integers, memory addresses, or other data units are those that are 64 bits wide. Also, 64-bit central processing units (CPU) and arithmetic logic units (ALU) are those that are based on processor registers, address buses, or data buses of that size. A computer that uses such a processor is a 64-bit computer.

<span class="mw-page-title-main">Ultrix</span> Series of discontinued Unix operating systems by DEC

Ultrix is the brand name of Digital Equipment Corporation's (DEC) discontinued native Unix operating systems for the PDP-11, VAX, MicroVAX and DECstations.

<span class="mw-page-title-main">DEC PRISM</span> RISC instruction set architecture

PRISM was a 32-bit RISC instruction set architecture (ISA) developed by Digital Equipment Corporation (DEC). It was the outcome of a number of DEC research projects from the 1982–1985 time-frame, and the project was subject to continually changing requirements and planned uses that delayed its introduction. This process eventually decided to use the design for a new line of Unix workstations. The arithmetic logic unit (ALU) of the microPrism version had completed design in April 1988 and samples were fabricated, but the design of other components like the floating point unit (FPU) and memory management unit (MMU) were still not complete in the summer when DEC management decided to cancel the project in favor of MIPS-based systems. An operating system codenamed MICA was developed for the PRISM architecture, which would have served as a replacement for both VAX/VMS and ULTRIX on PRISM.

<span class="mw-page-title-main">DECstation</span> DEC brand of computers

The DECstation was a brand of computers used by DEC, and refers to three distinct lines of computer systems—the first released in 1978 as a word processing system, and the latter two both released in 1989. These comprised a range of computer workstations based on the MIPS architecture and a range of PC compatibles. The MIPS-based workstations ran ULTRIX, a DEC-proprietary version of UNIX, and early releases of OSF/1.

<span class="mw-page-title-main">VAXstation</span> Family of DEC workstation computers

The VAXstation is a discontinued family of workstation computers developed and manufactured by Digital Equipment Corporation using processors implementing the VAX instruction set architecture. VAXstation systems were typically shipped with either the OpenVMS or ULTRIX operating systems. Many members of the VAXstation family had corresponding MicroVAX variants, which primarily differ by the lack of graphics hardware.

<span class="mw-page-title-main">AMD Am2900</span>

Am2900 is a family of integrated circuits (ICs) created in 1975 by Advanced Micro Devices (AMD). They were constructed with bipolar devices, in a bit-slice topology, and were designed to be used as modular components each representing a different aspect of a computer control unit (CCU). By using the bit slicing technique, the Am2900 family was able to implement a CCU with data, addresses, and instructions to be any multiple of 4 bits by multiplying the number of ICs. One major problem with this modular technique was that it required a larger number of ICs to implement what could be done on a single CPU IC. The Am2901 chip included an arithmetic logic unit (ALU) and 16 4-bit processor register slices, and was the "core" of the series. It could count using 4 bits and implement binary operations as well as various bit-shifting operations. The Am2909 was a 4-bit-slice address sequencer that could generate 4-bit addresses on a single chip, and by using n of them, it was able to generate 4n-bit addresses. It had a stack that could store a microprogram counter up to 4 nest levels, as well as a stack pointer.

<span class="mw-page-title-main">CVAX</span> Microprocessor chipset

The CVAX is a microprocessor chipset developed and fabricated by Digital Equipment Corporation (DEC) that implemented the VAX instruction set architecture (ISA). The chipset consisted of the CVAX 78034 CPU, CFPA floating-point accelerator, CVAX clock chip, and the associated support chips, the CVAX System Support Chip (CSSC), CVAX Memory Controller (CMCTL), and CVAX Q-Bus Interface Chip (CQBIC).

<span class="mw-page-title-main">VAX-11</span> Family of superminicomputers by Digital

The VAX-11 is a discontinued family of 32-bit superminicomputers, running the Virtual Address eXtension (VAX) instruction set architecture (ISA), developed and manufactured by Digital Equipment Corporation (DEC). Development began in 1976. In addition to being powerful machines in their own right, they also offer the additional ability to run user mode PDP-11 code, offering an upward compatible path for existing customers.

<span class="mw-page-title-main">MicroVAX</span> Family of low-cost minicomputers

The MicroVAX is a discontinued family of low-cost minicomputers developed and manufactured by Digital Equipment Corporation (DEC). The first model, the MicroVAX I, was introduced in 1983. They used processors that implemented the VAX instruction set architecture (ISA) and were succeeded by the VAX 4000. Many members of the MicroVAX family had corresponding VAXstation variants, which primarily differ by the addition of graphics hardware. The MicroVAX family supports Digital's VMS and ULTRIX operating systems. Prior to VMS V5.0, MicroVAX hardware required a dedicated version of VMS named MicroVMS.

<span class="mw-page-title-main">DEC V-11</span>

The V-11, code-named "Scorpio", is a miniprocessor chip set implementation of the VAX instruction set architecture (ISA) developed and fabricated by Digital Equipment Corporation (DEC).

<span class="mw-page-title-main">VAX 8000</span> Family of superminicomputers by Digital Equipment Corporation

The VAX 8000 is a discontinued family of superminicomputers developed and manufactured by Digital Equipment Corporation (DEC) using processors implementing the VAX instruction set architecture (ISA).

The VAX 9000 is a discontinued family of mainframes developed and manufactured by Digital Equipment Corporation (DEC) using custom ECL-based processors implementing the VAX instruction set architecture (ISA). Equipped with optional vector processors, they were marketed into the supercomputer space as well. As with other VAX systems, they were sold with either the VMS or Ultrix operating systems.

<span class="mw-page-title-main">MicroVAX 78032</span>

The MicroVAX 78032 is a microprocessor developed and fabricated by Digital Equipment Corporation (DEC) that implements a subset of the VAX instruction set architecture (ISA). The 78032 is used exclusively in DEC's VAX-based systems, starting with the MicroVAX II in 1985. When clocked at a frequency of 5 MHz, the 78032's integer performance is comparable to the original VAX-11/780 of 1977. The microprocessor can be paired with the MicroVAX 78132 floating point accelerator for improved floating point performance.

Since 1985, many processors implementing some version of the MIPS architecture have been designed and used widely.

References

  1. "VAX MACRO and Instruction Set Reference Manual". OpenVMS documentation. April 2001. 8.1 Basic Architecture. Archived from the original on September 6, 2001.
  2. DEC STD 032 – VAX Architecture Standard (PDF). Digital Equipment Corp. January 5, 1990. p. 12-5. Retrieved August 1, 2022.
  3. Bistriceanu, Virgil. "Computer Architecture – Class notes" (PDF). Illinois Institute of Technology. Retrieved April 15, 2022.
  4. Payne, Mary; Bhandarkar, Dileep (1980). "VAX floating point: a solid foundation for numerical computation". SIGARCH Computer Architecture News. ACM. 8 (4): 22–33. doi: 10.1145/641845.641849 . ISSN   0163-5964. S2CID   15021135.
  5. 1 2 Levy, Henry; Eckhouse, Richard (June 28, 2014). Computer Programming and Architecture: The Vax. Digital Press. ISBN   9781483299372.
  6. "Another Approach to Instruction Set Architecture—VAX" (PDF). Archived from the original (PDF) on June 10, 2017. Retrieved October 3, 2018. ... instruction set architectures, we chose the VAX as programmer-friendly instruction set, an asset
  7. "VAX". Esp. noted for its large, assembler-programmer-friendly instruction set --- an asset that
  8. "VAX MACRO and Instruction Set Reference Manual". OpenVMS documentation. April 2001. 9.2.5 Procedure Call Instructions. Archived from the original on March 30, 2002.
  9. Goss, Clinton F. (August 2013) [First published June 1986]. Machine Code Optimization: Improving Executable Object Code (PDF) (PhD). Vol. Computer Science Department Technical Report No. 246. Courant Institute, New York University. arXiv: 1308.4815 . Bibcode:2013arXiv1308.4815G . Retrieved August 22, 2013.
  10. 1 2 Rainville, Jim; Howard, Karen, eds. (1997). "VAX/VMS at 20". Digital Equipment Corporation. Archived from the original on July 20, 2018. Retrieved July 20, 2018.
  11. Paul A. Karger; Mary Ellen Zurko; Douglas W. Benin; Andrew H. Mason; Clifford E. Kahnh (May 7–9, 1990). A VMM security kernel for the VAX architecture (PDF). Proceedings. 1990 IEEE Computer Society Symposium on Research in Security and Privacy. IEEE. doi:10.1109/RISP.1990.63834 . Retrieved January 31, 2021.
  12. "NetBSD/vax".
  13. "OpenBSD/vax".
  14. "Porting Linux to the VAX".
  15. "OpenBSD 6.0". 2016. Retrieved June 20, 2017.
  16. "VAX 11/780, The First VAX System (October 1977)".
  17. Slater, Robert (1987). Portraits in Silicon. MIT Press. p.  213. ISBN   978-0-262-69131-4.
  18. "VAX 11/780 Computer: CPU". Computer History Museum. Retrieved October 24, 2012.
  19. "MicroVAX II (1985)". Computer History and Simulation.
  20. "Steal the best". micro.magnet.fsu.edu. Retrieved January 30, 2008. The Russian phrase was: СВАКС... Когда вы забатите довольно воровать настоящий лучший
  21. "CVAX (1987)". Computer History and Simulation. Retrieved January 30, 2008.
  22. "VAX Systems: A letter from Jesse Lipcon". Archived from the original on August 15, 2000.
  23. "If It Ain't Broke, Don't Fix It: Ancient Computers in Use Today". PCWorld. Retrieved October 11, 2021.
  24. Wand, R.; Kesteven, M.; Rayner, P. (February 24, 1984). "Computing Requirements for AT Software Development" (PDF).
  25. Joshi, Prem; Delacroix, Jacques (September 1984). "New Flexibility For Multiple VAX/VMS". HARDCOPY . pp. 64–68.
  26. Mark Smotherman (July 19, 2008). "Who are the Computer Architects?" . Retrieved September 30, 2008.
  27. Supnik, Bob (2007). "Raven". Computer History and Simulation. Retrieved March 1, 2019.
  28. "RAL Informatics Report 1984-85" . Retrieved October 15, 2007.
  29. "The TPA story" . Retrieved October 15, 2007.
  30. Dujnic, J.; Fristacky, N.; Molnar, L.; Plander, I.; Rovan, B. (1999). "On the history of computer science, computer engineering, and computer technology development in Slovakia". IEEE Annals of the History of Computing. 21 (3): 38–48. doi:10.1109/85.778981.
  31. Laimutis Telksnys; Antanas Zilinskas (July 1999). "Computers in Lithuania" (PDF). IEEE Annals of the History of Computing. 21 (3): 31–37. doi:10.1109/85.778980. S2CID   16240778.
  32. Prokhorov N.L.; Gorskiy V.E. "Basic software for 32-bit SM computer models". Software Systems Journal (in Russian). 1988 (3). Retrieved September 15, 2021.
  33. U.S. Congress, Office of Technology Assessment (July 1987). Technology transfer to China. U.S. Government Printing Office. p. 96. ISBN   9781428922914. OTA-USC-340.
  34. Xia Nanyin; Chan Laixing (1990). "Satellite Launch and TT&C Systems of China and Their Roles in International Cooperation". In F. Sharokhi; J. S. Greenberg; T. Al-Saud (eds.). Space Commercialization: Launch Vehicles and Programs. American Institute of Aeronautics and Astronautics. p. 244. ISBN   0-930403-75-4.

Further reading