36-bit computing

Last updated

In computer architecture, 36-bit integers, memory addresses, or other data units are those that are 36 bits (six six-bit characters) wide. Also, 36-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size. 36-bit computers were popular in the early mainframe computer era from the 1950s through the early 1970s.

Contents

Friden mechanical calculator. The electronic computer word length of 36-bits was chosen, in part, to match its precision. Friden calculator - Ridai Museum of Modern Science, Tokyo - DSC07579.JPG
Friden mechanical calculator. The electronic computer word length of 36-bits was chosen, in part, to match its precision.

Starting in the 1960s, but especially the 1970s, the introduction of 7-bit ASCII and 8-bit EBCDIC led to the move to machines using 8-bit bytes, with word sizes that were multiples of 8, notably the 32-bit IBM System/360 mainframe and Digital Equipment VAX and Data General MV series superminicomputers. By the mid-1970s the conversion was largely complete, and microprocessors quickly moved from 8-bit to 16-bit to 32-bit over a period of a decade. The number of 36-bit machines rapidly fell during this period, offered largely for backward compatibility purposes running legacy programs.

History

Prior to the introduction of computers, the state of the art in precision scientific and engineering calculation was the ten-digit, electrically powered, mechanical calculator, such as those manufactured by Friden, Marchant and Monroe. These calculators had a column of keys for each digit, and operators were trained to use all their fingers when entering numbers, so while some specialized calculators had more columns, ten was a practical limit.[ citation needed ] Computers, as the new competitor, had to match that accuracy. Decimal computers sold in that era, such as the IBM 650 and the IBM 7070, had a word length of ten digits, as did ENIAC, one of the earliest computers.

Early binary computers aimed at the same market therefore often used a 36-bit word length. This was long enough to represent positive and negative integers to an accuracy of ten decimal digits (35 bits would have been the minimum). It also allowed the storage of six alphanumeric characters encoded in a six-bit character code. Computers with 36-bit words included the MIT Lincoln Laboratory TX-2, the IBM 701/704/709/7090/7094, the UNIVAC 1103/1103A/1105 and 1100/2200 series, the General Electric GE-600/Honeywell 6000, the Digital Equipment Corporation PDP-6/PDP-10 (as used in the DECsystem-10/DECSYSTEM-20), and the Symbolics 3600 series.

Smaller machines like the PDP-1/PDP-9/PDP-15 used 18-bit words, so a double word was 36 bits.

These computers had addresses 12 to 18 bits in length. The addresses referred to 36-bit words, so the computers were limited to addressing between 4,096 and 262,144 words (24,576 to 1,572,864 six-bit characters). The older 36-bit computers were limited to a similar amount of physical memory as well. Architectures that survived evolved over time to support larger virtual address spaces using memory segmentation or other mechanisms.

The common character packings included:

Characters were extracted from words either using machine code shift and mask operations or with special-purpose hardware supporting 6-bit, 9-bit, or variable-length characters. The Univac 1100/2200 used the partial word designator of the instruction, the "J" field, to access characters. The GE-600 used special indirect words to access 6- and 9-bit characters. the PDP-6/10 had special instructions to access arbitrary-length byte fields.

The standard C programming language requires that the size of the char data type be at least 8 bits, [3] and that all data types other than bitfields have a size that is a multiple of the character size, [4] so standard C implementations on 36-bit machines would typically use 9-bit chars, although 12-bit, 18-bit, or 36-bit would also satisfy the requirements of the standard. [5]

By the time IBM introduced System/360 with 32-bit full words, scientific calculations had largely shifted to floating point, where double-precision formats offered more than 10-digit accuracy. The 360s also included instructions for variable-length decimal arithmetic for commercial applications, so the practice of using word lengths that were a power of two quickly became commonplace, though at least one line of 36-bit computer systems are still sold as of 2019, the Unisys ClearPath Dorado series, which is the continuation of the UNIVAC 1100/2200 series of mainframe computers.

CompuServe was launched using 36-bit PDP-10 computers in the late 1960s. It continued using PDP-10 and DECSYSTEM-10-compatible hardware and retired the service in the late 2000s.

Other uses in electronics

The LatticeECP3 FPGAs from Lattice Semiconductor include multiplier slices that can be configured to support the multiplication of two 36-bit numbers. [6] The DSP block in Altera Stratix FPGAs can do 36-bit additions and multiplications. [7]

See also

Related Research Articles

The byte is a unit of digital information that most commonly consists of eight bits. Historically, the byte was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit of memory in many computer architectures. To disambiguate arbitrarily sized bytes from the common 8-bit definition, network protocol documents such as the Internet Protocol refer to an 8-bit byte as an octet. Those bits in an octet are usually counted with numbering from 0 to 7 or 7 to 0 depending on the bit endianness.

<span class="mw-page-title-main">Binary-coded decimal</span> System of digitally encoding numbers

In computing and electronic systems, binary-coded decimal (BCD) is a class of binary encodings of decimal numbers where each digit is represented by a fixed number of bits, usually four or eight. Sometimes, special bit patterns are used for a sign or other indications.

<span class="mw-page-title-main">PDP-10</span> 36-bit computer by Digital (1966–1983)

Digital Equipment Corporation (DEC)'s PDP-10, later marketed as the DECsystem-10, is a mainframe computer family manufactured beginning in 1966 and discontinued in 1983. 1970s models and beyond were marketed under the DECsystem-10 name, especially as the TOPS-10 operating system became widely used.

<span class="mw-page-title-main">IBM System/360</span> IBM mainframe computer family (1964–1977)

The IBM System/360 (S/360) is a family of mainframe computer systems announced by IBM on April 7, 1964, and delivered between 1965 and 1978. System/360 was the first family of computers designed to cover both commercial and scientific applications and a complete range of applications from small to large. The design distinguished between architecture and implementation, allowing IBM to release a suite of compatible designs at different prices. All but the only partially compatible Model 44 and the most expensive systems use microcode to implement the instruction set, featuring 8-bit byte addressing and fixed point binary, fixed point decimal and hexadecimal floating-point calculations.

In computer architecture, 8-bit integers or other data units are those that are 8 bits wide. Also, 8-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers or data buses of that size. Memory addresses for 8-bit CPUs are generally larger than 8-bit, usually 16-bit. 8-bit microcomputers are microcomputers that use 8-bit microprocessors.

<span class="mw-page-title-main">UNIVAC 1100/2200 series</span> Family of mainframe computers

The UNIVAC 1100/2200 series is a series of compatible 36-bit computer systems, beginning with the UNIVAC 1107 in 1962, initially made by Sperry Rand. The series continues to be supported today by Unisys Corporation as the ClearPath Dorado Series. The solid-state 1107 model number was in the same sequence as the earlier vacuum-tube computers, but the early computers were not compatible with their solid-state successors.

<span class="mw-page-title-main">IBM 700/7000 series</span> Mainframe computer systems made by IBM through the 1950s and early 1960s

The IBM 700/7000 series is a series of large-scale (mainframe) computer systems that were made by IBM through the 1950s and early 1960s. The series includes several different, incompatible processor architectures. The 700s use vacuum-tube logic and were made obsolete by the introduction of the transistorized 7000s. The 7000s, in turn, were eventually replaced with System/360, which was announced in 1964. However the 360/65, the first 360 powerful enough to replace 7000s, did not become available until November 1965. Early problems with OS/360 and the high cost of converting software kept many 7000s in service for years afterward.

<span class="mw-page-title-main">PDP-6</span> 36-bit mainframe computer (1964–1966)

The PDP-6, short for Programmed Data Processor model 6, is a computer developed by Digital Equipment Corporation (DEC) during 1963 and first delivered in the summer of 1964. It was an expansion of DEC's existing 18-bit systems to use a 36-bit data word, which was at that time a common word size for large machines like IBM mainframes. The system was constructed using the same germanium transistor-based System Module layout as DEC's earlier machines, like the PDP-1 and PDP-4.

<span class="mw-page-title-main">Memory address</span> Reference to a specific memory location

In computing, a memory address is a reference to a specific memory location used at various levels by software and hardware. Memory addresses are fixed-length sequences of digits conventionally displayed and manipulated as unsigned integers. Such numerical semantic bases itself upon features of CPU, as well upon use of the memory like an array endorsed by various programming languages.

Byte addressing in hardware architectures supports accessing individual bytes. Computers with byte addressing are sometimes called byte machines, in contrast to word-addressable architectures, word machines, that access data by word.

In computing, a word is the natural unit of data used by a particular processor design. A word is a fixed-sized datum handled as a unit by the instruction set or the hardware of the processor. The number of bits or digits in a word is an important characteristic of any specific processor design or computer architecture.

RADIX 50 or RAD50, is an uppercase-only character encoding created by Digital Equipment Corporation (DEC) for use on their DECsystem, PDP, and VAX computers.

A six-bit character code is a character encoding designed for use on computers with word lengths a multiple of 6. Six bits can only encode 64 distinct characters, so these codes generally include only the upper-case letters, the numerals, some punctuation characters, and sometimes control characters. The 7-track magnetic tape format was developed to store data in such codes, along with an additional parity bit.

In computer architecture, 12-bit integers, memory addresses, or other data units are those that are 12 bits wide. Also, 12-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size.

<span class="mw-page-title-main">Decimal computer</span> Computer operating on base-10 numbers

A decimal computer is a computer that can represent numbers and addresses in decimal and that provides instructions to operate on those numbers and addresses directly in decimal, without conversion to a pure binary representation. Some also had a variable wordlength, which enabled operations on numbers with a large number of digits.

This timeline of binary prefixes lists events in the history of the evolution, development, and use of units of measure that are germane to the definition of the binary prefixes by the International Electrotechnical Commission (IEC) in 1998, used primarily with units of information such as the bit and the byte.

In computer architecture, 18-bit integers, memory addresses, or other data units are those that are 18 bits wide. Also, 18-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size.

The PDP-11 architecture is a 16-bit CISC instruction set architecture (ISA) developed by Digital Equipment Corporation (DEC). It is implemented by central processing units (CPUs) and microprocessors used in PDP-11 minicomputers. It was in wide use during the 1970s, but was eventually overshadowed by the more powerful VAX architecture in the 1980s.

An instruction set architecture (ISA) is an abstract model of a computer, also referred to as computer architecture. A realization of an ISA is called an implementation. An ISA permits multiple implementations that may vary in performance, physical size, and monetary cost ; because the ISA serves as the interface between software and hardware. Software that has been written for an ISA can run on different implementations of the same ISA. This has enabled binary compatibility between different generations of computers to be easily achieved, and the development of computer families. Both of these developments have helped to lower the cost of computers and to increase their applicability. For these reasons, the ISA is one of the most important abstractions in computing today.

In computer architecture, 16-bit integers, memory addresses, or other data units are those that are 16 bits wide. Also, 16-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size. 16-bit microcomputers are microcomputers that use 16-bit microprocessors.

References

  1. 1 2 Marshall Cline. "Would you please go over the rules about bytes, chars, and characters one more time?"
  2. 1 2 RFC   114: "A file transfer protocol"
  3. ISO/IEC 9899:1999 specification. p. 20, § 5.2.4.2.1. Retrieved 2023-07-24.
  4. ISO/IEC 9899:1999 specification. p. 37, § 6.2.6.1 (4). Retrieved 2023-07-24.
  5. Marshall Cline. "C++ FAQ: the rules about bytes, chars, and characters".
  6. "LatticeECP3 sysDSP Usage Guide". Lattice Semiconductor . Retrieved April 29, 2019.
  7. "Digital Signal Processing (DSP) Blocks in Stratix Devices". Altera+accessdate=December 27, 2013.