18-bit computing

Last updated

In computer architecture, 18-bit integers, memory addresses, or other data units are those that are 18 bits (2.25 octets) wide. Also, 18-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size.

Contents

Eighteen binary digits have 262144 (1000000 octal, 40000 hexadecimal) distinct combinations.

Eighteen bits was a common word size for smaller computers in the 1960s, when large computers often using 36 bit words and 6-bit character sets, sometimes implemented as extensions of BCD, were the norm. There were also 18-bit teletypes experimented with in the 1940s.

Example computer architectures

Possibly the most well-known 18-bit computer architectures are the PDP-1, PDP-4, PDP-7, PDP-9 and PDP-15 minicomputers produced by Digital Equipment Corporation from 1960 to 1975. Digital's PDP-10 used 36-bit words but had 18-bit addresses.

The UNIVAC division of Remington Rand produced several 18-bit computers, including the UNIVAC 418 and several military systems.

The IBM 7700 Data Acquisition System was announced by IBM on December 2, 1963.

The BCL Molecular 18 was a group of systems designed and manufactured in the UK in the 1970s and 1980s.

The NASA Standard Spacecraft Computer NSSC-1 was developed as a standard component for the MultiMission Modular Spacecraft at the Goddard Space Flight Center (GSFC) in 1974.

The flying-spot store digital memory in the first experimental electronic switching systems used nine plates of optical memory that were read and written two bits at a time, producing a word size of 18 bits.

Character encoding

Eighteen-bit machines use a variety of character encodings.

The DEC Radix-50, called Radix 508 format, packs three characters plus two bits in each 18-bit word. [1]

The Teletype packs three characters in each 18-bit word; each character a 5-bit Baudot code and an upper-case bit. [2]

The DEC SIXBIT format packs three characters in each 18-bit word, [2] each 6-bit character obtained by stripping the high bits from the 7-bit ASCII code, which folds lowercase to uppercase letters.

Related Research Articles

<span class="mw-page-title-main">Digital Equipment Corporation</span> U.S. computer manufacturer 1957–1998

Digital Equipment Corporation, using the trademark Digital, was a major American company in the computer industry from the 1960s to the 1990s. The company was co-founded by Ken Olsen and Harlan Anderson in 1957. Olsen was president until he was forced to resign in 1992, after the company had gone into precipitous decline.

<span class="mw-page-title-main">Minicomputer</span> Mid-1960s–late-1980s class of smaller computers

A minicomputer, or colloquially mini, is a type of smaller general-purpose computer developed in the mid-1960s and sold at a much lower price than mainframe and mid-size computers from IBM and its direct competitors. In a 1970 survey, The New York Times suggested a consensus definition of a minicomputer as a machine costing less than US$25,000, with an input-output device such as a teleprinter and at least four thousand words of memory, that is capable of running programs in a higher level language, such as Fortran or BASIC.

<span class="mw-page-title-main">PDP-10</span> 36-bit computer by Digital (1966–1983)

Digital Equipment Corporation (DEC)'s PDP-10, later marketed as the DECsystem-10, is a mainframe computer family manufactured beginning in 1966 and discontinued in 1983. 1970s models and beyond were marketed under the DECsystem-10 name, especially as the TOPS-10 operating system became widely used.

<span class="mw-page-title-main">PDP-8</span> Minicomputer product line

The PDP-8 is a family of 12-bit minicomputers that was produced by Digital Equipment Corporation (DEC). It was the first commercially successful minicomputer, with over 50,000 units being sold over the model's lifetime. Its basic design follows the pioneering LINC but has a smaller instruction set, which is an expanded version of the PDP-5 instruction set. Similar machines from DEC are the PDP-12 which is a modernized version of the PDP-8 and LINC concepts, and the PDP-14 industrial controller system.

<span class="mw-page-title-main">PDP-11</span> Series of 16-bit minicomputers

The PDP–11 is a series of 16-bit minicomputers sold by Digital Equipment Corporation (DEC) from 1970 into the late 1990s, one of a set of products in the Programmed Data Processor (PDP) series. In total, around 600,000 PDP-11s of all models were sold, making it one of DEC's most successful product lines. The PDP-11 is considered by some experts to be the most popular minicomputer.

RT-11 is a discontinued small, low-end, single-user real-time operating system for the full line of Digital Equipment Corporation PDP-11 16-bit computers. RT-11 was first implemented in 1970. It was widely used for real-time computing systems, process control, and data acquisition across all PDP-11s. It was also used for low-cost general-use computing.

<span class="mw-page-title-main">UNIVAC 1103</span> Computer

The UNIVAC 1103 or ERA 1103, a successor to the UNIVAC 1101, was a computer system designed by Engineering Research Associates and built by the Remington Rand corporation in October 1953. It was the first computer for which Seymour Cray was credited with design work.

<span class="mw-page-title-main">PDP-6</span> 36-bit mainframe computer (1964–1966)

The PDP-6, short for Programmed Data Processor model 6, is a computer developed by Digital Equipment Corporation (DEC) during 1963 and first delivered in the summer of 1964. It was an expansion of DEC's existing 18-bit systems to use a 36-bit data word, which was at that time a common word size for large machines like IBM mainframes. The system was constructed using the same germanium transistor-based System Module layout as DEC's earlier machines, like the PDP-1 and PDP-4.

<span class="mw-page-title-main">History of computing hardware (1960s–present)</span>

The history of computing hardware starting at 1960 is marked by the conversion from vacuum tube to solid-state devices such as transistors and then integrated circuit (IC) chips. Around 1953 to 1959, discrete transistors started being considered sufficiently reliable and economical that they made further vacuum tube computers uncompetitive. Metal–oxide–semiconductor (MOS) large-scale integration (LSI) technology subsequently led to the development of semiconductor memory in the mid-to-late 1960s and then the microprocessor in the early 1970s. This led to primary computer memory moving away from magnetic-core memory devices to solid-state static and dynamic semiconductor memory, which greatly reduced the cost, size, and power consumption of computers. These advances led to the miniaturized personal computer (PC) in the 1970s, starting with home computers and desktop computers, followed by laptops and then mobile computers over the next several decades.

<span class="mw-page-title-main">Index register</span> CPU register used for modifying operand addresses

An index register in a computer's CPU is a processor register used for pointing to operand addresses during the run of a program. It is useful for stepping through strings and arrays. It can also be used for holding loop iterations and counters. In some architectures it is used for read/writing blocks of memory. Depending on the architecture it may be a dedicated index register or a general-purpose register. Some instruction sets allow more than one index register to be used; in that case additional instruction fields may specify which index registers to use.

<span class="mw-page-title-main">36-bit computing</span> Computer architecture bit width

In computer architecture, 36-bit integers, memory addresses, or other data units are those that are 36 bits wide. Also, 36-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size. 36-bit computers were popular in the early mainframe computer era from the 1950s through the early 1970s.

In computing, a word is the natural unit of data used by a particular processor design. A word is a fixed-sized datum handled as a unit by the instruction set or the hardware of the processor. The number of bits or digits in a word is an important characteristic of any specific processor design or computer architecture.

The PDP-5 was Digital Equipment Corporation's first 12-bit computer, introduced in 1963.

RADIX 50 or RAD50, is an uppercase-only character encoding created by Digital Equipment Corporation (DEC) for use on their DECsystem, PDP, and VAX computers.

The Massbus is a high-performance computer input/output bus designed in the 1970s by Digital Equipment Corporation (DEC). The architecture development was sponsored by Gordon Bell and John Levy was the principal architect.

<span class="mw-page-title-main">RK05</span> Disk drive for Digital Equipment Corporation minicomputers

Digital Equipment Corporation's RK05 is a disk drive whose removable disk pack can hold about 2.5 megabytes of data. Introduced 1972, it is similar to IBM's 1964-introduced 2310, and uses a disk pack similar to IBM's 2315 disk pack, although the latter only held 1 megabyte. An RK04 drive, which has half the capacity of an RK05, was also offered.

A six-bit character code is a character encoding designed for use on computers with word lengths a multiple of 6. Six bits can only encode 64 distinct characters, so these codes generally include only the upper-case letters, the numerals, some punctuation characters, and sometimes control characters. The 7-track magnetic tape format was developed to store data in such codes, along with an additional parity bit.

In computer architecture, 12-bit integers, memory addresses, or other data units are those that are 12 bits wide. Also, 12-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size.

In computer architecture, 16-bit integers, memory addresses, or other data units are those that are 16 bits wide. Also, 16-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size. 16-bit microcomputers are microcomputers that use 16-bit microprocessors.

<span class="mw-page-title-main">PDP-8/e</span> 1970 model of the DEC PDP-8 line of minicomputers

The PDP-8/e was a model of the PDP-8 line of minicomputers, designed by the Digital Equipment Corporation to be a general purpose computer that inexpensively met the needs of the average user while also being capable of modular expansion to meet the more specific needs of advanced user.

References

  1. "Linking Loader". PDP-9 Utility Programs--Advanced Software System--Programmer's Reference Manual (PDF). Maynard, Massachusetts: Digital Equipment Corporation. 1968. p. A1-1. Archived (PDF) from the original on January 25, 2019.
  2. 1 2 PDP-7 Symbolic Assembler Programming Manual (PDF). Maynard, Massachusetts: Digital Equipment Corporation. 1965. pp. 6, 38–39. Archived (PDF) from the original on May 23, 2017. Retrieved June 18, 2015.