This article needs additional citations for verification .(November 2017) |
A hardware security module (HSM) is a physical computing device that safeguards and manages secrets (most importantly digital keys), and performs encryption and decryption functions for digital signatures, strong authentication and other cryptographic functions. [1] These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server. A hardware security module contains one or more secure cryptoprocessor chips. [2] [3]
HSMs may have features that provide tamper evidence such as visible signs of tampering or logging and alerting, or tamper resistance which makes tampering difficult without making the HSM inoperable, or tamper responsiveness such as deleting keys upon tamper detection. [4] Each module contains one or more secure cryptoprocessor chips to prevent tampering and bus probing, or a combination of chips in a module that is protected by the tamper evident, tamper resistant, or tamper responsive packaging. A vast majority of existing HSMs are designed mainly to manage secret keys. Many HSM systems have means to securely back up the keys they handle outside of the HSM. Keys may be backed up in wrapped form and stored on a computer disk or other media, or externally using a secure portable device like a smartcard or some other security token.[ citation needed ]
HSMs are used for real time authorization and authentication in critical infrastructure thus are typically engineered to support standard high availability models including clustering, automated failover, and redundant field-replaceable components.
A few of the HSMs available in the market have the capability to execute specially developed modules within the HSM's secure enclosure. Such an ability is useful, for example, in cases where special algorithms or business logic has to be executed in a secured and controlled environment. The modules can be developed in native C language, .NET, Java, or other programming languages.
Due to the critical role they play in securing applications and infrastructure, general purpose HSMs and/or the cryptographic modules are typically certified according to internationally recognized standards such as Common Criteria (e.g. using Protection Profile EN 419 221-5, "Cryptographic Module for Trust Services") or FIPS 140 (currently the 3rd version, often referred to as FIPS 140-3). Although the highest level of FIPS 140 security certification attainable is Security Level 4, most of the HSMs have Level 3 certification. In the Common Criteria system the highest EAL (Evaluation Assurance Level) is EAL7, most of the HSMs have EAL4+ certification. When used in financial payments applications, the security of an HSM is often validated against the HSM requirements defined by the Payment Card Industry Security Standards Council. [5]
A hardware security module can be employed in any application that uses digital keys. Typically, the keys would be of high value - meaning there would be a significant, negative impact to the owner of the key if it were compromised.
The functions of an HSM are:
HSMs are also deployed to manage transparent data encryption keys for databases and keys for storage devices such as disk or tape.[ citation needed ]
Some HSM systems are also hardware cryptographic accelerators. They usually cannot beat the performance of hardware-only solutions for symmetric key operations. However, with performance ranges from 1 to 10,000 1024-bit RSA signatures per second, HSMs can provide significant CPU offload for asymmetric key operations. Since the National Institute of Standards and Technology (NIST) is recommending the use of 2,048 bit RSA keys from year 2010, [6] performance at longer key sizes has become more important. To address this issue, most HSMs now support elliptic curve cryptography (ECC), which delivers stronger encryption with shorter key lengths.
In PKI environments, the HSMs may be used by certification authorities (CAs) and registration authorities (RAs) to generate, store, and handle asymmetric key pairs. In these cases, there are some fundamental features a device must have, namely:
On the other hand, device performance in a PKI environment is generally less important, in both online and offline operations, as Registration Authority procedures represent the performance bottleneck of the Infrastructure.
Specialized HSMs are used in the payment card industry. HSMs support both general-purpose functions and specialized functions required to process transactions and comply with industry standards. They normally do not feature a standard API.
Typical applications are transaction authorization and payment card personalization, requiring functions such as:
The major organizations that produce and maintain standards for HSMs on the banking market are the Payment Card Industry Security Standards Council, ANS X9, and ISO.
Performance-critical applications that have to use HTTPS (SSL/TLS), can benefit from the use of an SSL Acceleration HSM by moving the RSA operations, which typically requires several large integer multiplications, from the host CPU to the HSM device. Typical HSM devices can perform about 1 to 10,000 1024-bit RSA operations/second. [7] [8] Some performance at longer key sizes is becoming increasingly important.
An increasing number of registries use HSMs to store the key material that is used to sign large zonefiles. OpenDNSSEC is an open-source tool that manages signing DNS zone files.
On January 27, 2007, ICANN and Verisign, with support from the U.S. Department of Commerce, started deploying DNSSEC for DNS root zones. [9] Root signature details can be found on the Root DNSSEC's website. [10]
Blockchain technology depends on cryptographic operations. Safeguarding private keys is essential to maintain the security of blockchain processes that utilize asymmetric cryptography. The private keys are often stored in a cryptocurrency wallet like the hardware wallet in the image.
The synergy between HSMs and blockchain is mentioned in several papers, emphasizing their role in securing private keys and verifying identity, e.g. in contexts such as blockchain-driven mobility solutions. [11] [12]
The U.S. National Security Agency (NSA) used to rank cryptographic products or algorithms by a certification called product types. Product types were defined in the National Information Assurance Glossary which used to define Type 1, 2, 3, and 4 products. The definitions of numeric type products have been removed from the government lexicon and are no longer used in government procurement efforts.
A secure cryptoprocessor is a dedicated computer-on-a-chip or microprocessor for carrying out cryptographic operations, embedded in a packaging with multiple physical security measures, which give it a degree of tamper resistance. Unlike cryptographic processors that output decrypted data onto a bus in a secure environment, a secure cryptoprocessor does not output decrypted data or decrypted program instructions in an environment where security cannot always be maintained.
Articles related to cryptography include:
There are a number of standards related to cryptography. Standard algorithms and protocols provide a focus for study; standards for popular applications attract a large amount of cryptanalysis.
The Federal Information Processing Standard Publication 140-2,, is a U.S. government computer security standard used to approve cryptographic modules. The title is Security Requirements for Cryptographic Modules. Initial publication was on May 25, 2001, and was last updated December 3, 2002.
NSA Suite B Cryptography was a set of cryptographic algorithms promulgated by the National Security Agency as part of its Cryptographic Modernization Program. It was to serve as an interoperable cryptographic base for both unclassified information and most classified information.
Trusted Platform Module (TPM) is an international standard for a secure cryptoprocessor, a dedicated microcontroller designed to secure hardware through integrated cryptographic keys. The term can also refer to a chip conforming to the standard ISO/IEC 11889. Common uses are to verify platform integrity, and to store disk encryption keys.
In Microsoft Windows, a Cryptographic Service Provider (CSP) is a software library that implements the Microsoft CryptoAPI (CAPI). CSPs implement encoding and decoding functions, which computer application programs may use, for example, to implement strong user authentication or for secure email.
The Microsoft Windows platform specific Cryptographic Application Programming Interface is an application programming interface included with Microsoft Windows operating systems that provides services to enable developers to secure Windows-based applications using cryptography. It is a set of dynamically linked libraries that provides an abstraction layer which isolates programmers from the code used to encrypt the data. The Crypto API was first introduced in Windows NT 4.0 and enhanced in subsequent versions.
Network Security Services (NSS) is a collection of cryptographic computer libraries designed to support cross-platform development of security-enabled client and server applications with optional support for hardware TLS/SSL acceleration on the server side and hardware smart cards on the client side. NSS provides a complete open-source implementation of cryptographic libraries supporting Transport Layer Security (TLS) / Secure Sockets Layer (SSL) and S/MIME. NSS releases prior to version 3.14 are tri-licensed under the Mozilla Public License 1.1, the GNU General Public License, and the GNU Lesser General Public License. Since release 3.14, NSS releases are licensed under GPL-compatible Mozilla Public License 2.0.
In cryptography, a key ceremony is a ceremony held to generate or use a cryptographic key.
The IBM 4764 Cryptographic Coprocessor is a secure cryptoprocessor that performs cryptographic operations used by application programs and by communications such as SSL private key transactions associated with SSL digital certificates.
OpenDNSSEC is a computer program that manages the security of domain names on the Internet. The project intends to drive adoption of Domain Name System Security Extensions (DNSSEC) to further enhance Internet security.
Utimaco Atalla, founded as Atalla Technovation and formerly known as Atalla Corporation or HP Atalla, is a security vendor, active in the market segments of data security and cryptography. Atalla provides government-grade end-to-end products in network security, and hardware security modules (HSMs) used in automated teller machines (ATMs) and Internet security. The company was founded by Egyptian engineer Mohamed M. Atalla in 1972. Atalla HSMs are the payment card industry's de facto standard, protecting 250 million card transactions daily as of 2013, and securing the majority of the world's ATM transactions as of 2014.
Nitrokey is an open-source USB key used to enable the secure encryption and signing of data. The secret keys are always stored inside the Nitrokey which protects against malware and attackers. A user-chosen PIN and a tamper-proof smart card protect the Nitrokey in case of loss and theft. The hardware and software of Nitrokey are open-source. The free software and open hardware enables independent parties to verify the security of the device. Nitrokey is supported on Microsoft Windows, macOS, Linux, and BSD.
The IBM 4765 PCIe Cryptographic Coprocessor is a hardware security module (HSM) that includes a secure cryptoprocessor implemented on a high-security, tamper resistant, programmable PCIe board. Specialized cryptographic electronics, microprocessor, memory, and random number generator housed within a tamper-responding environment provide a highly secure subsystem in which data processing and cryptography can be performed.
The IBM 4767 PCIe Cryptographic Coprocessor is a hardware security module (HSM) that includes a secure cryptoprocessor implemented on a high-security, tamper resistant, programmable PCIe board. Specialized cryptographic electronics, microprocessor, memory, and random number generator housed within a tamper-responding environment provide a highly secure subsystem in which data processing and cryptography can be performed. Sensitive key material is never exposed outside the physical secure boundary in a clear format.
The IBM 4768 PCIe Cryptographic Coprocessor is a hardware security module (HSM) that includes a secure cryptoprocessor implemented on a high security, tamper resistant, programmable PCIe board. Specialized cryptographic electronics, microprocessor, memory, and random number generator housed within a tamper-responding environment provide a highly secure subsystem in which data processing and cryptography can be performed. Sensitive key material is never exposed outside the physical secure boundary in a clear format.
This is a list of cybersecurity information technology. Cybersecurity is security as it is applied to information technology. This includes all technology that stores, manipulates, or moves data, such as computers, data networks, and all devices connected to or included in networks, such as routers and switches. All information technology devices and facilities need to be secured against intrusion, unauthorized use, and vandalism. Additionally, the users of information technology should be protected from theft of assets, extortion, identity theft, loss of privacy and confidentiality of personal information, malicious mischief, damage to equipment, business process compromise, and the general activity of cybercriminals. The public should be protected against acts of cyberterrorism, such as the compromise or loss of the electric power grid.
The IBM 4769 PCIe Cryptographic Coprocessor is a hardware security module (HSM) that includes a secure cryptoprocessor implemented on a high-security, tamper resistant, programmable PCIe board. Specialized cryptographic electronics, microprocessor, memory, and random number generator housed within a tamper-responding environment provide a highly secure subsystem in which data processing and cryptography can be performed. Sensitive key material is never exposed outside the physical secure boundary in a clear format.