In cryptography, PKCS #11 is one of the Public-Key Cryptography Standards, [1] and also refers to the programming interface to create and manipulate cryptographic tokens (a token where the secret is a cryptographic key).
The PKCS #11 standard defines a platform-independent API to cryptographic tokens, such as hardware security modules (HSM) and smart cards, and names the API itself "Cryptoki" (from "cryptographic token interface" and pronounced as "crypto-key", although "PKCS #11" is often used to refer to the API as well as the standard that defines it).
The API defines most commonly used cryptographic object types (RSA keys, X.509 certificates, DES/Triple DES keys, etc.) and all the functions needed to use, create/generate, modify and delete those objects.
Most commercial certificate authority (CA) software uses PKCS #11 to access the CA signing key[ clarification needed ] or to enroll user certificates. Cross-platform software that needs to use smart cards uses PKCS #11, such as Mozilla Firefox and OpenSSL (using an extension). It is also used to access smart cards and HSMs. Software written for Microsoft Windows may use the platform specific MS-CAPI API instead. Both Oracle Solaris and Red Hat Enterprise Linux contain implementations for use by applications, as well.
The Key Management Interoperability Protocol (KMIP) defines a wire protocol that has similar functionality to the PKCS#11 API.
The two standards were originally developed independently but are now both governed by an OASIS technical committee. It is the stated objective of both the PKCS#11 and KMIP committees to align the standards where practicable. For example, the PKCS#11 Sensitive and Extractable attributes are being added to KMIP version 1.4. There is considerable overlap between members of the two technical committees.
The PKCS#11 standard originated from RSA Security along with its other PKCS standards in 1994. In 2013, RSA contributed the latest draft revision of the standard (PKCS#11 2.30) to OASIS to continue the work on the standard within the newly created OASIS PKCS11 Technical Committee. [2] The following list contains significant revision information:
The Organization for the Advancement of Structured Information Standards is a nonprofit consortium that works on the development, convergence, and adoption of projects - both open standards and open source - for Computer security, blockchain, Internet of things (IoT), emergency management, cloud computing, legal data exchange, energy, content technologies, and other areas.
In cryptography, PKCS are a group of public-key cryptography standards devised and published by RSA Security LLC, starting in the early 1990s. The company published the standards to promote the use of the cryptography techniques for which they had patents, such as the RSA algorithm, the Schnorr signature algorithm and several others. Though not industry standards, some of the standards have begun to move into the "standards track" processes of relevant standards organizations in recent years, such as the IETF and the PKIX working group.
Key management refers to management of cryptographic keys in a cryptosystem. This includes dealing with the generation, exchange, storage, use, crypto-shredding (destruction) and replacement of keys. It includes cryptographic protocol design, key servers, user procedures, and other relevant protocols.
Web Services Security is an extension to SOAP to apply security to Web services. It is a member of the Web service specifications and was published by OASIS.
Web Services for Remote Portlets (WSRP) is an OASIS-approved network protocol standard designed for communications with remote portlets.
The Generic Security Service Application Program Interface is an application programming interface for programs to access security services.
Java Card is a software technology that allows Java-based applications (applets) to be run securely on smart cards and more generally on similar secure small memory footprint devices which are called "secure elements" (SE). Today, a secure element is not limited to its smart cards and other removable cryptographic tokens form factors; embedded SEs soldered onto a device board and new security designs embedded into general purpose chips are also widely used. Java Card addresses this hardware fragmentation and specificities while retaining code portability brought forward by Java.
The Microsoft Windows platform specific Cryptographic Application Programming Interface is an application programming interface included with Microsoft Windows operating systems that provides services to enable developers to secure Windows-based applications using cryptography. It is a set of dynamically linked libraries that provides an abstraction layer which isolates programmers from the code used to encrypt the data. The Crypto API was first introduced in Windows NT 4.0 and enhanced in subsequent versions.
A hardware security module (HSM) is a physical computing device that safeguards and manages secrets, performs encryption and decryption functions for digital signatures, strong authentication and other cryptographic functions. These modules traditionally come in the form of a plug-in card or an external device that attaches directly to a computer or network server. A hardware security module contains one or more secure cryptoprocessor chips.
Network Security Services (NSS) is a collection of cryptographic computer libraries designed to support cross-platform development of security-enabled client and server applications with optional support for hardware TLS/SSL acceleration on the server side and hardware smart cards on the client side. NSS provides a complete open-source implementation of cryptographic libraries supporting Transport Layer Security (TLS) / Secure Sockets Layer (SSL) and S/MIME. NSS releases prior to version 3.14 are tri-licensed under the Mozilla Public License 1.1, the GNU General Public License, and the GNU Lesser General Public License. Since release 3.14, NSS releases are licensed under GPL-compatible Mozilla Public License 2.0.
The Advanced Message Queuing Protocol (AMQP) is an open standard application layer protocol for message-oriented middleware. The defining features of AMQP are message orientation, queuing, routing, reliability and security.
WS-Trust is a WS-* specification and OASIS standard that provides extensions to WS-Security, specifically dealing with the issuing, renewing, and validating of security tokens, as well as with ways to establish, assess the presence of, and broker trust relationships between participants in a secure message exchange.
In cryptography, PKCS #12 defines an archive file format for storing many cryptography objects as a single file. It is commonly used to bundle a private key with its X.509 certificate or to bundle all the members of a chain of trust.
In cryptography, a key ceremony is a ceremony held to generate or use a cryptographic key.
In cryptography, PKCS #1 is the first of a family of standards called Public-Key Cryptography Standards (PKCS), published by RSA Laboratories. It provides the basic definitions of and recommendations for implementing the RSA algorithm for public-key cryptography. It defines the mathematical properties of public and private keys, primitive operations for encryption and signatures, secure cryptographic schemes, and related ASN.1 syntax representations.
The Key Management Interoperability Protocol (KMIP) is an extensible communication protocol that defines message formats for the manipulation of cryptographic keys on a key management server. This facilitates data encryption by simplifying encryption key management. Keys may be created on a server and then retrieved, possibly wrapped by other keys. Both symmetric and asymmetric keys are supported, including the ability to sign certificates. KMIP also allows for clients to ask a server to encrypt or decrypt data, without needing direct access to the key.
wolfSSL is a small, portable, embedded SSL/TLS library targeted for use by embedded systems developers. It is an open source implementation of TLS written in the C programming language. It includes SSL/TLS client libraries and an SSL/TLS server implementation as well as support for multiple APIs, including those defined by SSL and TLS. wolfSSL also includes an OpenSSL compatibility interface with the most commonly used OpenSSL functions.
Token Binding is a proposed standard for a Transport Layer Security (TLS) extension that aims to increase TLS security by using cryptographic certificates on both ends of the TLS connection. Current practice often depends on bearer tokens, which may be lost or stolen. Bearer tokens are also vulnerable to man-in-the-middle attacks or replay attacks. In contrast, bound tokens are established by a user agent that generates a private-public key pair per target server, providing the public key to the server, and thereafter proving possession of the corresponding private key on every TLS connection to the server.
The SAML metadata standard belongs to the family of XML-based standards known as the Security Assertion Markup Language (SAML) published by OASIS in 2005. A SAML metadata document describes a SAML deployment such as a SAML identity provider or a SAML service provider. Deployments share metadata to establish a baseline of trust and interoperability.
The IBM 4769 PCIe Cryptographic Coprocessor is a hardware security module (HSM) that includes a secure cryptoprocessor implemented on a high-security, tamper resistant, programmable PCIe board. Specialized cryptographic electronics, microprocessor, memory, and random number generator housed within a tamper-responding environment provide a highly secure subsystem in which data processing and cryptography can be performed. Sensitive key material is never exposed outside the physical secure boundary in a clear format.