General | |
---|---|
First published | 1981 |
Derived from | DES |
Cipher detail | |
Key sizes | 112 or 168 bits |
Block sizes | 64 bits |
Structure | Feistel network |
Rounds | 48 DES-equivalent rounds |
Best public cryptanalysis | |
Lucks: 232 known plaintexts, 2113 operations including 290 DES encryptions, 288 memory; Biham: find one of 228 target keys with a handful of chosen plaintexts per key and 284 encryptions |
In cryptography, Triple DES (3DES or TDES), officially the Triple Data Encryption Algorithm (TDEA or Triple DEA), is a symmetric-key block cipher, which applies the DES cipher algorithm three times to each data block. The Data Encryption Standard's (DES) 56-bit key is no longer considered adequate in the face of modern cryptanalytic techniques and supercomputing power. A CVE released in 2016, CVE-2016-2183 disclosed a major security vulnerability in DES and 3DES encryption algorithms. This CVE, combined with the inadequate key size of DES and 3DES, led to NIST deprecating DES and 3DES for new applications in 2017, and for all applications by the end of 2023. [1] It has been replaced with the more secure, more robust AES.
While the US government and industry standards abbreviate the algorithm's name as TDES (Triple DES) and TDEA (Triple Data Encryption Algorithm), [2] RFC 1851 referred to it as 3DES from the time it first promulgated the idea, and this namesake has since come into wide use by most vendors, users, and cryptographers. [3] [4] [5] [6]
In 1978, a triple encryption method using DES with two 56-bit keys was proposed by Walter Tuchman; in 1981 Merkle and Hellman proposed a more secure triple key version of 3DES with 112 bits of security. [7]
The Triple Data Encryption Algorithm is variously defined in several standards documents:
The original DES cipher's key size of 56 bits was generally sufficient when that algorithm was designed, but the availability of increasing computational power made brute-force attacks feasible. Triple DES provides a relatively simple method of increasing the key size of DES to protect against such attacks, without the need to design a completely new block cipher algorithm.
A naive approach to increase strength of a block encryption algorithm with short key length (like DES) would be to use two keys instead of one, and encrypt each block twice: . If the original key length is bits, one would hope this scheme provides security equivalent to using key bits long. Unfortunately, this approach is vulnerable to meet-in-the-middle attack: given a known plaintext pair , such that , one can recover the key pair in steps, instead of the steps one would expect from an ideally secure algorithm with bits of key.
Therefore, Triple DES uses a "key bundle" that comprises three DES keys, , and , each of 56 bits (excluding parity bits). The encryption algorithm is:
That is, DES encrypt with , DES decrypt with , then DES encrypt with .
Decryption is the reverse:
That is, decrypt with , encrypt with , then decrypt with .
Each triple encryption encrypts one block of 64 bits of data.
In each case the middle operation is the reverse of the first and last. This improves the strength of the algorithm when using keying option 2 and provides backward compatibility with DES with keying option 3.
The standards define three keying options:
Each DES key is 8 odd-parity bytes, with 56 bits of key and 8 bits of error-detection. [9] A key bundle requires 24 bytes for option 1, 16 for option 2, or 8 for option 3.
NIST (and the current TCG specifications version 2.0 of approved algorithms for Trusted Platform Module) also disallows using any one of the 64 following 64-bit values in any keys (note that 32 of them are the binary complement of the 32 others; and that 32 of these keys are also the reverse permutation of bytes of the 32 others), listed here in hexadecimal (in each byte, the least significant bit is an odd-parity generated bit, it is discarded when forming the effective 56-bit keys):
01.01.01.01.01.01.01.01, FE.FE.FE.FE.FE.FE.FE.FE, E0.FE.FE.E0.F1.FE.FE.F1, 1F.01.01.1F.0E.01.01.0E, 01.01.FE.FE.01.01.FE.FE, FE.FE.01.01.FE.FE.01.01, E0.FE.01.1F.F1.FE.01.0E, 1F.01.FE.E0.0E.01.FE.F1, 01.01.E0.E0.01.01.F1.F1, FE.FE.1F.1F.FE.FE.0E.0E, E0.FE.1F.01.F1.FE.0E.01, 1F.01.E0.FE.0E.01.F1.FE, 01.01.1F.1F.01.01.0E.0E, FE.FE.E0.E0.FE.FE.F1.F1, E0.FE.E0.FE.F1.FE.F1.FE, 1F.01.1F.01.0E.01.0E.01, 01.FE.01.FE.01.FE.01.FE, FE.01.FE.01.FE.01.FE.01, E0.01.FE.1F.F1.01.FE.0E, 1F.FE.01.E0.0E.FE.01.F1, 01.FE.FE.01.01.FE.FE.01, FE.01.01.FE.FE.01.01.FE, E0.01.01.E0.F1.01.01.F1, 1F.FE.FE.1F.0E.FE.FE.0E, 01.FE.E0.1F.01.FE.F1.0E, FE.01.1F.E0.FE.01.0E.F1, E0.01.1F.FE.F1.01.0E.FE, 1F.FE.E0.01.0E.FE.F1.01, 01.FE.1F.E0.01.FE.0E.F1, FE.01.E0.1F.FE.01.F1.0E, E0.01.E0.01.F1.01.F1.01, 1F.FE.1F.FE.0E.FE.0E.FE, 01.E0.01.E0.01.F1.01.F1, FE.1F.FE.1F.FE.0E.FE.0E, E0.1F.FE.01.F1.0E.FE.01, 1F.E0.01.FE.0E.F1.01.FE, 01.E0.FE.1F.01.F1.FE.0E, FE.1F.01.E0.FE.0E.01.F1, E0.1F.01.FE.F1.0E.01.FE, 1F.E0.FE.01.0E.F1.FE.01, 01.E0.E0.01.01.F1.F1.01, FE.1F.1F.FE.FE.0E.0E.FE, E0.1F.1F.E0.F1.0E.0E.F1, 1F.E0.E0.1F.0E.F1.F1.0E, 01.E0.1F.FE.01.F1.0E.FE, FE.1F.E0.01.FE.0E.F1.01, E0.1F.E0.1F.F1.0E.F1.0E, 1F.E0.1F.E0.0E.F1.0E.F1, 01.1F.01.1F.01.0E.01.0E, FE.E0.FE.E0.FE.F1.FE.F1, E0.E0.FE.FE.F1.F1.FE.FE, 1F.1F.01.01.0E.0E.01.01, 01.1F.FE.E0.01.0E.FE.F1, FE.E0.01.1F.FE.F1.01.0E, E0.E0.01.01.F1.F1.01.01, 1F.1F.FE.FE.0E.0E.FE.FE, 01.1F.E0.FE.01.0E.F1.FE, FE.E0.1F.01.FE.F1.0E.01, E0.E0.1F.1F.F1.F1.0E.0E, 1F.1F.E0.E0.0E.0E.F1.F1, 01.1F.1F.01.01.0E.0E.01, FE.E0.E0.FE.FE.F1.F1.FE, E0.E0.E0.E0.F1.F1.F1.F1, 1F.1F.1F.1F.0E.0E.0E.0E,
With these restrictions on allowed keys, Triple DES has been reapproved with keying options 1 and 2 only. Generally the three keys are generated by taking 24 bytes from a strong random generator and only keying option 1 should be used (option 2 needs only 16 random bytes, but strong random generators are hard to assert and it's considered best practice to use only option 1).
As with all block ciphers, encryption and decryption of multiple blocks of data may be performed using a variety of modes of operation, which can generally be defined independently of the block cipher algorithm. However, ANS X9.52 specifies directly, and NIST SP 800-67 specifies via SP 800-38A [19] that some modes shall only be used with certain constraints on them that do not necessarily apply to general specifications of those modes. For example, ANS X9.52 specifies that for cipher block chaining, the initialization vector shall be different each time, whereas ISO/IEC 10116 [20] does not. FIPS PUB 46-3 and ISO/IEC 18033-3 define only the single block algorithm, and do not place any restrictions on the modes of operation for multiple blocks.
In general, Triple DES with three independent keys (keying option 1) has a key length of 168 bits (three 56-bit DES keys), but due to the meet-in-the-middle attack, the effective security it provides is only 112 bits. [16] Keying option 2 reduces the effective key size to 112 bits (because the third key is the same as the first). However, this option is susceptible to certain chosen-plaintext or known-plaintext attacks, [21] [22] and thus it is designated by NIST to have only 80 bits of security. [16] This can be considered insecure, and, as consequence Triple DES has been deprecated by NIST in 2017. [23]
The short block size of 64 bits makes 3DES vulnerable to block collision attacks if it is used to encrypt large amounts of data with the same key. The Sweet32 attack shows how this can be exploited in TLS and OpenVPN. [24] Practical Sweet32 attack on 3DES-based cipher-suites in TLS required blocks (785 GB) for a full attack, but researchers were lucky to get a collision just after around blocks, which took only 25 minutes.
The security of TDEA is affected by the number of blocks processed with one key bundle. One key bundle shall not be used to apply cryptographic protection (e.g., encrypt) more than 64-bit data blocks.
— Recommendation for Triple Data Encryption Algorithm (TDEA) Block Cipher (SP 800-67 Rev2) [13]
OpenSSL does not include 3DES by default since version 1.1.0 (August 2016) and considers it a "weak cipher". [25]
As of 2008, the electronic payment industry uses Triple DES and continues to develop and promulgate standards based upon it, such as EMV. [26]
Earlier versions of Microsoft OneNote, [27] Microsoft Outlook 2007 [28] and Microsoft System Center Configuration Manager 2012 [29] use Triple DES to password-protect user content and system data. However, in December 2018, Microsoft announced the retirement of 3DES throughout their Office 365 service. [30]
Firefox and Mozilla Thunderbird [31] use Triple DES in CBC mode to encrypt website authentication login credentials when using a master password.
Below is a list of cryptography libraries that support Triple DES:
Some implementations above may not include 3DES in the default build, in later or more recent versions.
{{cite journal}}
: Cite journal requires |journal=
(help){{cite magazine}}
: Cite magazine requires |magazine=
(help){{cite journal}}
: Cite journal requires |journal=
(help)The double-length key triple DES encipherment algorithm (see ISO/IEC 18033-3) is the approved cryptographic algorithm to be used in the encipherment and MAC mechanisms specified in Annex A1. The algorithm is based on the (single) DES algorithm standardised in ISO 16609.
Applies to: Microsoft Office Outlook 2007
The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.
In cryptography, a block cipher is a deterministic algorithm that operates on fixed-length groups of bits, called blocks. Block ciphers are the elementary building blocks of many cryptographic protocols. They are ubiquitous in the storage and exchange of data, where such data is secured and authenticated via encryption.
In cryptography, a cipher is an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure. An alternative, less common term is encipherment. To encipher or encode is to convert information into cipher or code. In common parlance, "cipher" is synonymous with "code", as they are both a set of steps that encrypt a message; however, the concepts are distinct in cryptography, especially classical cryptography.
The Data Encryption Standard is a symmetric-key algorithm for the encryption of digital data. Although its short key length of 56 bits makes it too insecure for modern applications, it has been highly influential in the advancement of cryptography.
Symmetric-key algorithms are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys. The keys, in practice, represent a shared secret between two or more parties that can be used to maintain a private information link. The requirement that both parties have access to the secret key is one of the main drawbacks of symmetric-key encryption, in comparison to public-key encryption. However, symmetric-key encryption algorithms are usually better for bulk encryption. With exception of the one-time pad they have a smaller key size, which means less storage space and faster transmission. Due to this, asymmetric-key encryption is often used to exchange the secret key for symmetric-key encryption.
In cryptography, an initialization vector (IV) or starting variable is an input to a cryptographic primitive being used to provide the initial state. The IV is typically required to be random or pseudorandom, but sometimes an IV only needs to be unpredictable or unique. Randomization is crucial for some encryption schemes to achieve semantic security, a property whereby repeated usage of the scheme under the same key does not allow an attacker to infer relationships between segments of the encrypted message. For block ciphers, the use of an IV is described by the modes of operation.
In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher to provide information security such as confidentiality or authenticity. A block cipher by itself is only suitable for the secure cryptographic transformation of one fixed-length group of bits called a block. A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block.
In cryptography, ciphertext or cyphertext is the result of encryption performed on plaintext using an algorithm, called a cipher. Ciphertext is also known as encrypted or encoded information because it contains a form of the original plaintext that is unreadable by a human or computer without the proper cipher to decrypt it. This process prevents the loss of sensitive information via hacking. Decryption, the inverse of encryption, is the process of turning ciphertext into readable plaintext. Ciphertext is not to be confused with codetext because the latter is a result of a code, not a cipher.
The meet-in-the-middle attack (MITM), a known plaintext attack, is a generic space–time tradeoff cryptographic attack against encryption schemes that rely on performing multiple encryption operations in sequence. The MITM attack is the primary reason why Double DES is not used and why a Triple DES key (168-bit) can be brute-forced by an attacker with 256 space and 2112 operations.
In cryptography, the Tiny Encryption Algorithm (TEA) is a block cipher notable for its simplicity of description and implementation, typically a few lines of code. It was designed by David Wheeler and Roger Needham of the Cambridge Computer Laboratory; it was first presented at the Fast Software Encryption workshop in Leuven in 1994, and first published in the proceedings of that workshop.
In cryptography, DES-X is a variant on the DES symmetric-key block cipher intended to increase the complexity of a brute-force attack. The technique used to increase the complexity is called key whitening.
In cryptography, a weak key is a key, which, used with a specific cipher, makes the cipher behave in some undesirable way. Weak keys usually represent a very small fraction of the overall keyspace, which usually means that, a cipher key made by random number generation is very unlikely to give rise to a security problem. Nevertheless, it is considered desirable for a cipher to have no weak keys. A cipher with no weak keys is said to have a flat, or linear, key space.
In cryptography, a cipher block chaining message authentication code (CBC-MAC) is a technique for constructing a message authentication code (MAC) from a block cipher. The message is encrypted with some block cipher algorithm in cipher block chaining (CBC) mode to create a chain of blocks such that each block depends on the proper encryption of the previous block. This interdependence ensures that a change to any of the plaintext bits will cause the final encrypted block to change in a way that cannot be predicted or counteracted without knowing the key to the block cipher.
Disk encryption is a special case of data at rest protection when the storage medium is a sector-addressable device. This article presents cryptographic aspects of the problem. For an overview, see disk encryption. For discussion of different software packages and hardware devices devoted to this problem, see disk encryption software and disk encryption hardware.
In cryptography, Galois/Counter Mode (GCM) is a mode of operation for symmetric-key cryptographic block ciphers which is widely adopted for its performance. GCM throughput rates for state-of-the-art, high-speed communication channels can be achieved with inexpensive hardware resources.
Institute of Electrical and Electronics Engineers (IEEE) standardization project for encryption of stored data, but more generically refers to the Security in Storage Working Group (SISWG), which includes a family of standards for protection of stored data and for the corresponding cryptographic key management.
In cryptography, key wrap constructions are a class of symmetric encryption algorithms designed to encapsulate (encrypt) cryptographic key material. The Key Wrap algorithms are intended for applications such as protecting keys while in untrusted storage or transmitting keys over untrusted communications networks. The constructions are typically built from standard primitives such as block ciphers and cryptographic hash functions.
In cryptography, format-preserving encryption (FPE), refers to encrypting in such a way that the output is in the same format as the input. The meaning of "format" varies. Typically only finite sets of characters are used; numeric, alphabetic or alphanumeric. For example:
The following outline is provided as an overview of and topical guide to cryptography:
In cryptography, a Key Checksum Value (KCV) is the checksum of a cryptographic key. It is used to validate the key integrity or compare keys without knowing their actual values. The KCV is computed by encrypting a block of bytes, each with value '00' or '01', with the cryptographic key and retaining the first 6 hexadecimal characters of the encrypted result. It is used in key management in different ciphering devices, like SIM-cards or Hardware Security Modules (HSM).