NESSIE (New European Schemes for Signatures, Integrity and Encryption) was a European research project funded from 2000 to 2003 to identify secure cryptographic primitives. The project was comparable to the NIST AES process and the Japanese Government-sponsored CRYPTREC project, but with notable differences from both. In particular, there is both overlap and disagreement between the selections and recommendations from NESSIE and CRYPTREC (as of the August 2003 draft report). The NESSIE participants include some of the foremost active cryptographers in the world, as does the CRYPTREC project.
NESSIE was intended to identify and evaluate quality cryptographic designs in several categories, and to that end issued a public call for submissions in March 2000. Forty-two were received, and in February 2003 twelve of the submissions were selected. In addition, five algorithms already publicly known, but not explicitly submitted to the project, were chosen as "selectees". The project has publicly announced that "no weaknesses were found in the selected designs".
The selected algorithms and their submitters or developers are listed below. The five already publicly known, but not formally submitted to the project, are marked with a "*". Most may be used by anyone for any purpose without needing to seek a patent license from anyone; a license agreement is needed for those marked with a "#", but the licensors of those have committed to "reasonable non-discriminatory license terms for all interested", according to a NESSIE project press release.
None of the six stream ciphers submitted to NESSIE were selected because every one fell to cryptanalysis. This surprising result led to the eSTREAM project.
Entrants that did not get past the first stage of the contest include Noekeon, Q, Nimbus, NUSH, Grand Cru, Anubis, Hierocrypt, SC2000, and LILI-128.
The contractors and their representatives in the project were:
The Data Encryption Standard is a symmetric-key algorithm for the encryption of digital data. Although its short key length of 56 bits makes it too insecure for modern applications, it has been highly influential in the advancement of cryptography.
In cryptography, RC6 is a symmetric key block cipher derived from RC5. It was designed by Ron Rivest, Matt Robshaw, Ray Sidney, and Yiqun Lisa Yin to meet the requirements of the Advanced Encryption Standard (AES) competition. The algorithm was one of the five finalists, and also was submitted to the NESSIE and CRYPTREC projects. It was a proprietary algorithm, patented by RSA Security.
Articles related to cryptography include:
Vincent Rijmen is a Belgian cryptographer and one of the two designers of the Rijndael, the Advanced Encryption Standard. Rijmen is also the co-designer of the WHIRLPOOL cryptographic hash function, and the block ciphers Anubis, KHAZAD, Square, NOEKEON and SHARK.
In cryptography, Camellia is a symmetric key block cipher with a block size of 128 bits and key sizes of 128, 192 and 256 bits. It was jointly developed by Mitsubishi Electric and NTT of Japan. The cipher has been approved for use by the ISO/IEC, the European Union's NESSIE project and the Japanese CRYPTREC project. The cipher has security levels and processing abilities comparable to the Advanced Encryption Standard.
MARS is a block cipher that was IBM's submission to the Advanced Encryption Standard process. MARS was selected as an AES finalist in August 1999, after the AES2 conference in March 1999, where it was voted as the fifth and last finalist algorithm.
Joan Daemen is a Belgian cryptographer who is currently professor of digital security at Radboud University. He co-designed with Vincent Rijmen the Rijndael cipher, which was selected as the Advanced Encryption Standard (AES) in 2001. More recently, he co-designed the Keccak cryptographic hash, which was selected as the new SHA-3 hash by NIST in October 2012. He has also designed or co-designed the MMB, Square, SHARK, NOEKEON, 3-Way, and BaseKing block ciphers. In 2017 he won the Levchin Prize for Real World Cryptography "for the development of AES and SHA3". He describes his development of encryption algorithms as creating the bricks which are needed to build the secure foundations online.
CRYPTREC is the Cryptography Research and Evaluation Committees set up by the Japanese Government to evaluate and recommend cryptographic techniques for government and industrial use. It is comparable in many respects to the European Union's NESSIE project and to the Advanced Encryption Standard process run by National Institute of Standards and Technology in the U.S.
In cryptography, MISTY1 is a block cipher designed in 1995 by Mitsuru Matsui and others for Mitsubishi Electric.
In cryptography, SAFER is the name of a family of block ciphers designed primarily by James Massey on behalf of Cylink Corporation. The early SAFER K and SAFER SK designs share the same encryption function, but differ in the number of rounds and the key schedule. More recent versions — SAFER+ and SAFER++ — were submitted as candidates to the AES process and the NESSIE project respectively. All of the algorithms in the SAFER family are unpatented and available for unrestricted use.
There are a number of standards related to cryptography. Standard algorithms and protocols provide a focus for study; standards for popular applications attract a large amount of cryptanalysis.
In cryptography, nothing-up-my-sleeve numbers are any numbers which, by their construction, are above suspicion of hidden properties. They are used in creating cryptographic functions such as hashes and ciphers. These algorithms often need randomized constants for mixing or initialization purposes. The cryptographer may wish to pick these values in a way that demonstrates the constants were not selected for a nefarious purpose, for example, to create a backdoor to the algorithm. These fears can be allayed by using numbers created in a way that leaves little room for adjustment. An example would be the use of initial digits from the number π as the constants. Using digits of π millions of places after the decimal point would not be considered trustworthy because the algorithm designer might have selected that starting point because it created a secret weakness the designer could later exploit—though even with natural-seeming selections, enough entropy exists in the possible choices that the utility of these numbers has been questioned.
Bart Preneel is a Belgian cryptographer and cryptanalyst. He is a professor at Katholieke Universiteit Leuven, in the COSIC group.
ECRYPT was a 4-year European research initiative launched on 1 February 2004 with the stated objective of promoting the collaboration of European researchers in information security, and especially in cryptology and digital watermarking.
Below is a timeline of notable events related to cryptography.
In cryptography, SC2000 is a block cipher invented by a research group at Fujitsu Labs. It was submitted to the NESSIE project, but was not selected. It was among the cryptographic techniques recommended for Japanese government use by CRYPTREC in 2003, however, has been dropped to "candidate" by CRYPTREC revision in 2013.
Jacques Stern is a cryptographer, currently a professor at the École Normale Supérieure. He received the 2006 CNRS Gold medal. His notable work includes the cryptanalysis of numerous encryption and signature schemes, the design of the Pointcheval–Stern signature algorithm, the Naccache–Stern cryptosystem and Naccache–Stern knapsack cryptosystem, and the block ciphers CS-Cipher, DFC, and xmx. He also contributed to the cryptanalysis of the SFLASH signature scheme.
Lattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices, either in the construction itself or in the security proof. Lattice-based constructions support important standards of post-quantum cryptography. Unlike more widely used and known public-key schemes such as the RSA, Diffie-Hellman or elliptic-curve cryptosystems — which could, theoretically, be defeated using Shor's algorithm on a quantum computer — some lattice-based constructions appear to be resistant to attack by both classical and quantum computers. Furthermore, many lattice-based constructions are considered to be secure under the assumption that certain well-studied computational lattice problems cannot be solved efficiently.
The NIST hash function competition was an open competition held by the US National Institute of Standards and Technology (NIST) to develop a new hash function called SHA-3 to complement the older SHA-1 and SHA-2. The competition was formally announced in the Federal Register on November 2, 2007. "NIST is initiating an effort to develop one or more additional hash algorithms through a public competition, similar to the development process for the Advanced Encryption Standard (AES)." The competition ended on October 2, 2012, when NIST announced that Keccak would be the new SHA-3 hash algorithm.
The following outline is provided as an overview of and topical guide to cryptography: