ARIA (cipher)

Last updated
ARIA
General
First published2003
Derived from AES
Certification South Korean standard
Cipher detail
Key sizes 128, 192, or 256 bits
Block sizes 128 bits
Structure Substitution–permutation network
Rounds 12, 14, or 16
Best public cryptanalysis
Meet-in-the-middle attack on 8 rounds with data complexity 256

In cryptography, ARIA is a block cipher [1] designed in 2003 by a large group of South Korean researchers. [2] In 2004, the Korean Agency for Technology and Standards selected it as a standard cryptographic technique.

Contents

The algorithm uses a substitution–permutation network structure based on AES. The interface is the same as AES: 128-bit block size with key size of 128, 192, or 256 bits. The number of rounds is 12, 14, or 16, depending on the key size. ARIA uses two 8×8-bit S-boxes and their inverses in alternate rounds; one of these is the Rijndael S-box.

The key schedule processes the key using a 3-round 256-bit Feistel cipher, with the binary expansion of 1/π as a source of "nothing up my sleeve numbers".

Implementations

The reference source code of ARIA cipher implemented in C, C++, and Java can be downloaded from KISA's cryptography use activation webpage. [3]

Standardization

Security

Related Research Articles

<span class="mw-page-title-main">Advanced Encryption Standard</span> Standard for the encryption of electronic data

The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.

In cryptography, RC4 is a stream cipher. While it is remarkable for its simplicity and speed in software, multiple vulnerabilities have been discovered in RC4, rendering it insecure. It is especially vulnerable when the beginning of the output keystream is not discarded, or when nonrandom or related keys are used. Particularly problematic uses of RC4 have led to very insecure protocols such as WEP.

<span class="mw-page-title-main">Symmetric-key algorithm</span> Algorithm

Symmetric-key algorithms are algorithms for cryptography that use the same cryptographic keys for both the encryption of plaintext and the decryption of ciphertext. The keys may be identical, or there may be a simple transformation to go between the two keys. The keys, in practice, represent a shared secret between two or more parties that can be used to maintain a private information link. The requirement that both parties have access to the secret key is one of the main drawbacks of symmetric-key encryption, in comparison to public-key encryption. However, symmetric-key encryption algorithms are usually better for bulk encryption. With exception of the one-time pad they have a smaller key size, which means less storage space and faster transmission. Due to this, asymmetric-key encryption is often used to exchange the secret key for symmetric-key encryption.

In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher to provide information security such as confidentiality or authenticity. A block cipher by itself is only suitable for the secure cryptographic transformation of one fixed-length group of bits called a block. A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block.

<span class="mw-page-title-main">CAST-128</span> Block cipher

In cryptography, CAST-128 is a symmetric-key block cipher used in a number of products, notably as the default cipher in some versions of GPG and PGP. It has also been approved for Government of Canada use by the Communications Security Establishment. The algorithm was created in 1996 by Carlisle Adams and Stafford Tavares using the CAST design procedure.

<span class="mw-page-title-main">GOST (block cipher)</span> Soviet/Russian national standard block cipher

The GOST block cipher (Magma), defined in the standard GOST 28147-89, is a Soviet and Russian government standard symmetric key block cipher with a block size of 64 bits. The original standard, published in 1989, did not give the cipher any name, but the most recent revision of the standard, GOST R 34.12-2015, specifies that it may be referred to as Magma. The GOST hash function is based on this cipher. The new standard also specifies a new 128-bit block cipher called Kuznyechik.

In cryptography, Camellia is a symmetric key block cipher with a block size of 128 bits and key sizes of 128, 192 and 256 bits. It was jointly developed by Mitsubishi Electric and NTT of Japan. The cipher has been approved for use by the ISO/IEC, the European Union's NESSIE project and the Japanese CRYPTREC project. The cipher has security levels and processing abilities comparable to the Advanced Encryption Standard.

<span class="mw-page-title-main">One-key MAC</span>

One-key MAC (OMAC) is a message authentication code constructed from a block cipher much like the CBC-MAC algorithm.

In cryptography, CAST-256 is a symmetric-key block cipher published in June 1998. It was submitted as a candidate for the Advanced Encryption Standard (AES); however, it was not among the five AES finalists. It is an extension of an earlier cipher, CAST-128; both were designed according to the "CAST" design methodology invented by Carlisle Adams and Stafford Tavares. Howard Heys and Michael Wiener also contributed to the design.

SEED is a block cipher developed by the Korea Information Security Agency (KISA). It is used broadly throughout South Korean industry, but seldom found elsewhere. It gained popularity in Korea because 40-bit encryption was not considered strong enough, so the Korea Information Security Agency developed its own standard. However, this decision has historically limited the competition of web browsers in Korea, as no major SSL libraries or web browsers supported the SEED algorithm, requiring users to use an ActiveX control in Internet Explorer for secure web sites.

NSA Suite B Cryptography was a set of cryptographic algorithms promulgated by the National Security Agency as part of its Cryptographic Modernization Program. It was to serve as an interoperable cryptographic base for both unclassified information and most classified information.

CCM mode is a mode of operation for cryptographic block ciphers. It is an authenticated encryption algorithm designed to provide both authentication and confidentiality. CCM mode is only defined for block ciphers with a block length of 128 bits.

The Secure Real-time Transport Protocol (SRTP) is a profile for Real-time Transport Protocol (RTP) intended to provide encryption, message authentication and integrity, and replay attack protection to the RTP data in both unicast and multicast applications. It was developed by a small team of Internet Protocol and cryptographic experts from Cisco and Ericsson. It was first published by the IETF in March 2004 as RFC 3711.

In cryptography, Galois/Counter Mode (GCM) is a mode of operation for symmetric-key cryptographic block ciphers which is widely adopted for its performance. GCM throughput rates for state-of-the-art, high-speed communication channels can be achieved with inexpensive hardware resources.

The following outline is provided as an overview of and topical guide to cryptography:

A cipher suite is a set of algorithms that help secure a network connection. Suites typically use Transport Layer Security (TLS) or its now-deprecated predecessor Secure Socket Layer (SSL). The set of algorithms that cipher suites usually contain include: a key exchange algorithm, a bulk encryption algorithm, and a message authentication code (MAC) algorithm.

<span class="mw-page-title-main">Twofish</span> Block cipher

In cryptography, Twofish is a symmetric key block cipher with a block size of 128 bits and key sizes up to 256 bits. It was one of the five finalists of the Advanced Encryption Standard contest, but it was not selected for standardization. Twofish is related to the earlier block cipher Blowfish.

<span class="mw-page-title-main">Speck (cipher)</span> Family of block ciphers

Speck is a family of lightweight block ciphers publicly released by the National Security Agency (NSA) in June 2013. Speck has been optimized for performance in software implementations, while its sister algorithm, Simon, has been optimized for hardware implementations. Speck is an add–rotate–xor (ARX) cipher.

In cryptography, security level is a measure of the strength that a cryptographic primitive — such as a cipher or hash function — achieves. Security level is usually expressed as a number of "bits of security", where n-bit security means that the attacker would have to perform 2n operations to break it, but other methods have been proposed that more closely model the costs for an attacker. This allows for convenient comparison between algorithms and is useful when combining multiple primitives in a hybrid cryptosystem, so there is no clear weakest link. For example, AES-128 is designed to offer a 128-bit security level, which is considered roughly equivalent to a RSA using 3072-bit key.

ChaCha20-Poly1305 is an authenticated encryption with additional data (AEAD) algorithm, that combines the ChaCha20 stream cipher with the Poly1305 message authentication code. Its usage in IETF protocols is standardized in RFC 8439. It has fast software performance, and without hardware acceleration, is usually faster than AES-GCM.

References

  1. "KISA: Block Cipher: ARIA". seed.kisa.or.kr.
  2. Kwon, Daesung; Kim, Jaesung; Park, Sangwoo; Sung, Soo Hak; Sohn, Yaekwon; Song, Jung Hwan; Yeom, Yongjin; Yoon, E-Joong; Lee, Sangjin; Lee, Jaewon; Chee, Seongtaek; Han, Daewan; Hong, Jin (2003). "New Block Cipher: ARIA". Information Security and Cryptology - ICISC 2003. Lecture Notes in Computer Science. Vol. 2971. Springer International Publishing. pp. 432–445. doi:10.1007/978-3-540-24691-6_32. ISBN   978-3-540-24691-6.
  3. "KISA: Cryptographic algorithm source code: ARIA". seed.kisa.or.kr.