NUSH

Last updated
NUSH
General
Designers
  • Anatoly Lebedev
  • Alexey Volchkov
First published2000
Cipher detail
Key sizes 128, 192, or 256 bits
Block sizes 64, 128, or 256 bits
Rounds 9, 17, or 33
Best public cryptanalysis
A linear attack faster than exhaustive search has been found. [1]

In cryptography, NUSH is a block cipher invented by Anatoly Lebedev and Alexey Volchkov for the Russian company LAN Crypto. It was submitted to the NESSIE project, but was not selected.

NUSH exists in several different variants, using keys of 128, 192, or 256 bits, and a block size of 64, 128, or 256 bits. The number of rounds is 9, 17, or 33, depending on the block size. The algorithm uses key whitening, but no S-boxes; the only operations it uses are AND, OR, XOR, modular addition, and bit rotation.

It has been shown that linear cryptanalysis can break NUSH with less effort than a brute force attack. [2]

Related Research Articles

<span class="mw-page-title-main">Advanced Encryption Standard</span> Standard for the encryption of electronic data

The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.

In cryptography, a block cipher is a deterministic algorithm that operates on fixed-length groups of bits, called blocks. Block ciphers are the elementary building blocks of many cryptographic protocols. They are ubiquitous in the storage and exchange of data, where such data is secured and authenticated via encryption.

<span class="mw-page-title-main">Data Encryption Standard</span> Early unclassified symmetric-key block cipher

The Data Encryption Standard is a symmetric-key algorithm for the encryption of digital data. Although its short key length of 56 bits makes it too insecure for modern applications, it has been highly influential in the advancement of cryptography.

Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block ciphers, but also to stream ciphers and cryptographic hash functions. In the broadest sense, it is the study of how differences in information input can affect the resultant difference at the output. In the case of a block cipher, it refers to a set of techniques for tracing differences through the network of transformation, discovering where the cipher exhibits non-random behavior, and exploiting such properties to recover the secret key.

<span class="mw-page-title-main">Serpent (cipher)</span>

Serpent is a symmetric key block cipher that was a finalist in the Advanced Encryption Standard (AES) contest, in which it ranked second to Rijndael. Serpent was designed by Ross Anderson, Eli Biham, and Lars Knudsen.

In cryptography, Camellia is a symmetric key block cipher with a block size of 128 bits and key sizes of 128, 192 and 256 bits. It was jointly developed by Mitsubishi Electric and NTT of Japan. The cipher has been approved for use by the ISO/IEC, the European Union's NESSIE project and the Japanese CRYPTREC project. The cipher has security levels and processing abilities comparable to the Advanced Encryption Standard.

<span class="mw-page-title-main">LOKI97</span> Block cipher

In cryptography, LOKI97 is a block cipher which was a candidate in the Advanced Encryption Standard competition. It is a member of the LOKI family of ciphers, with earlier instances being LOKI89 and LOKI91. LOKI97 was designed by Lawrie Brown, assisted by Jennifer Seberry and Josef Pieprzyk.

In cryptography, CAST-256 is a symmetric-key block cipher published in June 1998. It was submitted as a candidate for the Advanced Encryption Standard (AES); however, it was not among the five AES finalists. It is an extension of an earlier cipher, CAST-128; both were designed according to the "CAST" design methodology invented by Carlisle Adams and Stafford Tavares. Howard Heys and Michael Wiener also contributed to the design.

<span class="mw-page-title-main">DES-X</span> Block cipher

In cryptography, DES-X is a variant on the DES symmetric-key block cipher intended to increase the complexity of a brute-force attack. The technique used to increase the complexity is called key whitening.

<span class="mw-page-title-main">DEAL</span> Block cipher

In cryptography, DEAL is a symmetric block cipher derived from the Data Encryption Standard (DES). Its design was presented Lars Knudsen at the SAC conference in 1997, and submitted as a proposal to the AES contest in 1998 by Richard Outerbridge.

In cryptography, Q is a block cipher invented by Leslie McBride. It was submitted to the NESSIE project, but was not selected.

In cryptography, SC2000 is a block cipher invented by a research group at Fujitsu Labs. It was submitted to the NESSIE project, but was not selected. It was among the cryptographic techniques recommended for Japanese government use by CRYPTREC in 2003, however, has been dropped to "candidate" by CRYPTREC revision in 2013.

In cryptography, Hierocrypt-L1 and Hierocrypt-3 are block ciphers created by Toshiba in 2000. They were submitted to the NESSIE project, but were not selected. Both algorithms were among the cryptographic techniques recommended for Japanese government use by CRYPTREC in 2003, however, both have been dropped to "candidate" by CRYPTREC revision in 2013.

In cryptography, CIPHERUNICORN-A is a block cipher created by NEC in 2000. It was among the cryptographic techniques recommended for Japanese government use by CRYPTREC in 2003. However, it has been dropped to "candidate" level by the CRYPTREC revision of 2013.

In cryptography, COCONUT98 is a block cipher designed by Serge Vaudenay in 1998. It was one of the first concrete applications of Vaudenay's decorrelation theory, designed to be provably secure against differential cryptanalysis, linear cryptanalysis, and even certain types of undiscovered cryptanalytic attacks.

CLEFIA is a proprietary block cipher algorithm, developed by Sony. Its name is derived from the French word clef, meaning "key". The block size is 128 bits and the key size can be 128 bit, 192 bit or 256 bit. It is intended to be used in DRM systems. It is among the cryptographic techniques recommended candidate for Japanese government use by CRYPTREC revision in 2013.

The following outline is provided as an overview of and topical guide to cryptography:

<span class="mw-page-title-main">Twofish</span> Block cipher

In cryptography, Twofish is a symmetric key block cipher with a block size of 128 bits and key sizes up to 256 bits. It was one of the five finalists of the Advanced Encryption Standard contest, but it was not selected for standardization. Twofish is related to the earlier block cipher Blowfish.

<span class="mw-page-title-main">Speck (cipher)</span> Family of block ciphers

Speck is a family of lightweight block ciphers publicly released by the National Security Agency (NSA) in June 2013. Speck has been optimized for performance in software implementations, while its sister algorithm, Simon, has been optimized for hardware implementations. Speck is an add–rotate–xor (ARX) cipher.

<span class="mw-page-title-main">Simon (cipher)</span> Family of lightweight block ciphers

Simon is a family of lightweight block ciphers publicly released by the National Security Agency (NSA) in June 2013. Simon has been optimized for performance in hardware implementations, while its sister algorithm, Speck, has been optimized for software implementations.

References

  1. Lars Knudsen, Håvard Raddum (2001-03-07). "A first report on Whirlpool, NUSH, SC2000, Noekeon, Two-Track-MAC and RC6" (PDF). Retrieved 2018-09-13.
  2. Wenling Wu, Dengguo Feng (23 July 2001). "Linear cryptanalysis of NUSH block cipher". Science China Information Sciences. 45 (1): 59–67. doi:10.1360/02yf9005. ISSN   1009-2757. S2CID   10803906.