MMB (cipher)

Last updated
MMB
General
Designers Joan Daemen
First published1993
Derived from IDEA
Successors ABC
Cipher detail
Key sizes 128 bits
Block sizes 128 bits
Structure Substitution–permutation network [1]
Rounds 6
Best public cryptanalysis
Key recovery using 267 chosen plaintexts [2]

In cryptography, MMB (Modular Multiplication-based Block cipher) is a block cipher designed by Joan Daemen as an improved replacement for the IDEA cipher. [3] Modular multiplication is the central element in the design. Weaknesses in the key schedule were identified by Eli Biham, and this, together with the cipher's not having been designed to resist linear cryptanalysis, meant that other designs were pursued instead, such as 3-Way.

MMB has a key size and block size of 128 bits.

Related Research Articles

<span class="mw-page-title-main">Advanced Encryption Standard</span> Standard for the encryption of electronic data

The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.

In cryptography, a block cipher is a deterministic algorithm that operates on fixed-length groups of bits, called blocks. Block ciphers are the elementary building blocks of many cryptographic protocols. They are ubiquitous in the storage and exchange of data, where such data is secured and authenticated via encryption.

<span class="mw-page-title-main">Cryptanalysis</span> Study of analyzing information systems in order to discover their hidden aspects

Cryptanalysis refers to the process of analyzing information systems in order to understand hidden aspects of the systems. Cryptanalysis is used to breach cryptographic security systems and gain access to the contents of encrypted messages, even if the cryptographic key is unknown.

<span class="mw-page-title-main">Data Encryption Standard</span> Early unclassified symmetric-key block cipher

The Data Encryption Standard is a symmetric-key algorithm for the encryption of digital data. Although its short key length of 56 bits makes it too insecure for modern applications, it has been highly influential in the advancement of cryptography.

<span class="mw-page-title-main">International Data Encryption Algorithm</span>

In cryptography, the International Data Encryption Algorithm (IDEA), originally called Improved Proposed Encryption Standard (IPES), is a symmetric-key block cipher designed by James Massey of ETH Zurich and Xuejia Lai and was first described in 1991. The algorithm was intended as a replacement for the Data Encryption Standard (DES). IDEA is a minor revision of an earlier cipher Proposed Encryption Standard (PES).

In cryptography, an S-box (substitution-box) is a basic component of symmetric key algorithms which performs substitution. In block ciphers, they are typically used to obscure the relationship between the key and the ciphertext, thus ensuring Shannon's property of confusion. Mathematically, an S-box is a nonlinear vectorial Boolean function.

In cryptography, 3-Way is a block cipher designed in 1994 by Joan Daemen. It is closely related to BaseKing; the two are variants of the same general cipher technique.

In cryptography, Camellia is a symmetric key block cipher with a block size of 128 bits and key sizes of 128, 192 and 256 bits. It was jointly developed by Mitsubishi Electric and NTT of Japan. The cipher has been approved for use by the ISO/IEC, the European Union's NESSIE project and the Japanese CRYPTREC project. The cipher has security levels and processing abilities comparable to the Advanced Encryption Standard.

In cryptography, confusion and diffusion are two properties of the operation of a secure cipher identified by Claude Shannon in his 1945 classified report A Mathematical Theory of Cryptography. These properties, when present, work together to thwart the application of statistics and other methods of cryptanalysis.

Joan Daemen is a Belgian cryptographer who co-designed with Vincent Rijmen the Rijndael cipher, which was selected as the Advanced Encryption Standard (AES) in 2001. More recently, he co-designed the Keccak cryptographic hash, which was selected as the new SHA-3 hash by NIST in October 2012. He has also designed or co-designed the MMB, Square, SHARK, NOEKEON, 3-Way, and BaseKing block ciphers. In 2017 he won the Levchin Prize for Real World Cryptography "for the development of AES and SHA3". He describes his development of encryption algorithms as creating the bricks which are needed to build the secure foundations online.

In cryptography, Square is a block cipher invented by Joan Daemen and Vincent Rijmen. The design, published in 1997, is a forerunner to Rijndael, which has been adopted as the Advanced Encryption Standard. Square was introduced together with a new form of cryptanalysis discovered by Lars Knudsen, called the "Square attack".

In cryptography, SHARK is a block cipher identified as one of the predecessors of Rijndael.

In cryptography, BaseKing is a block cipher designed in 1994 by Joan Daemen. It is very closely related to 3-Way, as the two are variants of the same general cipher technique.

In cryptography, CIPHERUNICORN-E is a block cipher created by NEC in 1998. It was among the cryptographic techniques recommended for Japanese government use by CRYPTREC in 2003. However, it has been dropped to "candidate" level by the CRYPTREC revision of 2013.

In cryptography, xmx is a block cipher designed in 1997 by David M'Raïhi, David Naccache, Jacques Stern, and Serge Vaudenay. According to the designers it "uses public-key-like operations as confusion and diffusion means." The cipher was designed for efficiency, and the only operations it uses are XORs and modular multiplications.

In cryptography, COCONUT98 is a block cipher designed by Serge Vaudenay in 1998. It was one of the first concrete applications of Vaudenay's decorrelation theory, designed to be provably secure against differential cryptanalysis, linear cryptanalysis, and even certain types of undiscovered cryptanalytic attacks.

The following outline is provided as an overview of and topical guide to cryptography:

This article summarizes publicly known attacks against block ciphers and stream ciphers. Note that there are perhaps attacks that are not publicly known, and not all entries may be up to date.

<span class="mw-page-title-main">Speck (cipher)</span> Family of block ciphers

Speck is a family of lightweight block ciphers publicly released by the National Security Agency (NSA) in June 2013. Speck has been optimized for performance in software implementations, while its sister algorithm, Simon, has been optimized for hardware implementations. Speck is an add–rotate–xor (ARX) cipher.

<span class="mw-page-title-main">Simon (cipher)</span> Family of lightweight block ciphers

Simon is a family of lightweight block ciphers publicly released by the National Security Agency (NSA) in June 2013. Simon has been optimized for performance in hardware implementations, while its sister algorithm, Speck, has been optimized for software implementations.

References

  1. Slide 4 [ dead link ]
  2. K. Jia and J. Chen and M. Wang and X. Wang (2010), Practical-time Attack on the Full MMB Block Cipher (PDF), retrieved 2010-04-24
  3. Joan Daemen; René Govaerts; Joos Vandewalle (1993). "Block Ciphers Based on Modular Arithmetic". Proceedings of the 3rd Symposium on: State and Progress of Research in Cryptography. Fondazione Ugo Bordoni. pp. 80–89. CiteSeerX   10.1.1.52.2614 .