Timing attack

Last updated

In cryptography, a timing attack is a side-channel attack in which the attacker attempts to compromise a cryptosystem by analyzing the time taken to execute cryptographic algorithms. Every logical operation in a computer takes time to execute, and the time can differ based on the input; with precise measurements of the time for each operation, an attacker can work backwards to the input. Finding secrets through timing information may be significantly easier than using cryptanalysis of known plaintext, ciphertext pairs. Sometimes timing information is combined with cryptanalysis to increase the rate of information leakage. [1]


Information can leak from a system through measurement of the time it takes to respond to certain queries. How much this information can help an attacker depends on many variables: cryptographic system design, the CPU running the system, the algorithms used, assorted implementation details, timing attack countermeasures, the accuracy of the timing measurements, etc. Timing attacks can be applied to any algorithm that has data-dependent timing variation. Removing timing-dependencies is difficult in some algorithms that use low-level operations that frequently exhibit varied execution time.

Timing attacks are often overlooked in the design phase because they are so dependent on the implementation and can be introduced unintentionally with compiler optimizations. Avoidance of timing attacks involves design of constant-time functions and careful testing of the final executable code. [1]


Many cryptographic algorithms can be implemented (or masked by a proxy) in a way that reduces or eliminates data-dependent timing information, a constant-time algorithm. Consider an implementation in which every call to a subroutine always returns in exactly x seconds, where x is the maximum time it ever takes to execute that routine on every possible authorized input. In such an implementation, the timing of the algorithm is less likely to leak information about the data supplied to that invocation. [2] The downside of this approach is that the time used for all executions becomes that of the worst-case performance of the function.

The data-dependency of timing may stem from one of the following: [1]


The execution time for the square-and-multiply algorithm used in modular exponentiation depends linearly on the number of '1' bits in the key. While the number of '1' bits alone is not nearly enough information to make finding the key easy, repeated executions with the same key and different inputs can be used to perform statistical correlation analysis of timing information to recover the key completely, even by a passive attacker. Observed timing measurements often include noise (from such sources as network latency, or disk drive access differences from access to access, and the error correction techniques used to recover from transmission errors). Nevertheless, timing attacks are practical against a number of encryption algorithms, including RSA, ElGamal, and the Digital Signature Algorithm.

In 2003, Boneh and Brumley demonstrated a practical network-based timing attack on SSL-enabled web servers, based on a different vulnerability having to do with the use of RSA with Chinese remainder theorem optimizations. The actual network distance was small in their experiments, but the attack successfully recovered a server private key in a matter of hours. This demonstration led to the widespread deployment and use of blinding techniques in SSL implementations. In this context, blinding is intended to remove correlations between key and encryption time. [3]

Some versions of Unix use a relatively expensive implementation of the crypt library function for hashing an 8-character password into an 11-character string. On older hardware, this computation took a deliberately and measurably long time: as much as two or three seconds in some cases.[ citation needed ] The login program in early versions of Unix executed the crypt function only when the login name was recognized by the system. This leaked information through timing about the validity of the login name, even when the password was incorrect. An attacker could exploit such leaks by first applying brute-force to produce a list of login names known to be valid, then attempt to gain access by combining only these names with a large set of passwords known to be frequently used. Without any information on the validity of login names the time needed to execute such an approach would increase by orders of magnitude, effectively rendering it useless. Later versions of Unix have fixed this leak by always executing the crypt function, regardless of login name validity.[ citation needed ]

Two otherwise securely isolated processes running on a single system with either cache memory or virtual memory can communicate by deliberately causing page faults and/or cache misses in one process, then monitoring the resulting changes in access times from the other. Likewise, if an application is trusted, but its paging/caching is affected by branching logic, it may be possible for a second application to determine the values of the data compared to the branch condition by monitoring access time changes; in extreme examples, this can allow recovery of cryptographic key bits. [4] [5]

The 2017 Meltdown and Spectre attacks which forced CPU manufacturers (including Intel, AMD, ARM, and IBM) to redesign their CPUs both rely on timing attacks. [6] As of early 2018, almost every computer system in the world is affected by Spectre. [7] [8] [9]


The following C code demonstrates a typical insecure string comparison which stops testing as soon as a character doesn't match. For example, when comparing "ABCDE" with "ABxDE" it will return after 3 loop iterations:


By comparison, the following version runs in constant-time by testing all characters and using a bitwise operation to accumulate the result:


In the world of C library functions, the first function is analogous to memcmp(), while the latter is analogous to NetBSD's consttime_memequal() or [10] OpenBSD's timingsafe_bcmp() and timingsafe_memcmp. On other systems, the comparison function from cryptographic libraries like OpenSSL and libsodium can be used.


Timing attacks are easier to mount if the adversary knows the internals of the hardware implementation, and even more so, the cryptographic system in use. Since cryptographic security should never depend on the obscurity of either (see security through obscurity, specifically both Shannon's Maxim and Kerckhoffs's principle), resistance to timing attacks should not either. If nothing else, an exemplar can be purchased and reverse engineered. Timing attacks and other side-channel attacks may also be useful in identifying, or possibly reverse-engineering, a cryptographic algorithm used by some device.

Related Research Articles

<span class="mw-page-title-main">Advanced Encryption Standard</span> Standard for the encryption of electronic data

The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.

In cryptography, RC4 is a stream cipher. While it is remarkable for its simplicity and speed in software, multiple vulnerabilities have been discovered in RC4, rendering it insecure. It is especially vulnerable when the beginning of the output keystream is not discarded, or when nonrandom or related keys are used. Particularly problematic uses of RC4 have led to very insecure protocols such as WEP.

A key in cryptography is a piece of information, usually a string of numbers or letters that are stored in a file, which, when processed through a cryptographic algorithm, can encode or decode cryptographic data. Based on the used method, the key can be different sizes and varieties, but in all cases, the strength of the encryption relies on the security of the key being maintained. A key's security strength is dependent on its algorithm, the size of the key, the generation of the key, and the process of key exchange.

<span class="mw-page-title-main">Brute-force attack</span> Cryptanalytic method for unauthorized users to access data

In cryptography, a brute-force attack consists of an attacker submitting many passwords or passphrases with the hope of eventually guessing correctly. The attacker systematically checks all possible passwords and passphrases until the correct one is found. Alternatively, the attacker can attempt to guess the key which is typically created from the password using a key derivation function. This is known as an exhaustive key search.

<span class="mw-page-title-main">Secure cryptoprocessor</span> Device used for encryption

A secure cryptoprocessor is a dedicated computer-on-a-chip or microprocessor for carrying out cryptographic operations, embedded in a packaging with multiple physical security measures, which give it a degree of tamper resistance. Unlike cryptographic processors that output decrypted data onto a bus in a secure environment, a secure cryptoprocessor does not output decrypted data or decrypted program instructions in an environment where security cannot always be maintained.

<span class="mw-page-title-main">Tiny Encryption Algorithm</span> Block cipher

In cryptography, the Tiny Encryption Algorithm (TEA) is a block cipher notable for its simplicity of description and implementation, typically a few lines of code. It was designed by David Wheeler and Roger Needham of the Cambridge Computer Laboratory; it was first presented at the Fast Software Encryption workshop in Leuven in 1994, and first published in the proceedings of that workshop.

In cryptography, Camellia is a symmetric key block cipher with a block size of 128 bits and key sizes of 128, 192 and 256 bits. It was jointly developed by Mitsubishi Electric and NTT of Japan. The cipher has been approved for use by the ISO/IEC, the European Union's NESSIE project and the Japanese CRYPTREC project. The cipher has security levels and processing abilities comparable to the Advanced Encryption Standard.

In computer security, a side-channel attack is any attack based on extra information that can be gathered because of the fundamental way a computer protocol or algorithm is implemented, rather than flaws in the design of the protocol or algorithm itself or minor, but potentially devastating, mistakes or oversights in the implementation. Timing information, power consumption, electromagnetic leaks, and sound are examples of extra information which could be exploited to facilitate side-channel attacks.

<span class="mw-page-title-main">Power analysis</span> Form of side channel attack

Power analysis is a form of side channel attack in which the attacker studies the power consumption of a cryptographic hardware device. These attacks rely on basic physical properties of the device: semiconductor devices are governed by the laws of physics, which dictate that changes in voltages within the device require very small movements of electric charges (currents). By measuring those currents, it is possible to learn a small amount of information about the data being manipulated.

SHA-2 is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher.

<span class="mw-page-title-main">Salsa20</span> Stream ciphers

Salsa20 and the closely related ChaCha are stream ciphers developed by Daniel J. Bernstein. Salsa20, the original cipher, was designed in 2005, then later submitted to the eSTREAM European Union cryptographic validation process by Bernstein. ChaCha is a modification of Salsa20 published in 2008. It uses a new round function that increases diffusion and increases performance on some architectures.

In cryptography, key stretching techniques are used to make a possibly weak key, typically a password or passphrase, more secure against a brute-force attack by increasing the resources it takes to test each possible key. Passwords or passphrases created by humans are often short or predictable enough to allow password cracking, and key stretching is intended to make such attacks more difficult by complicating a basic step of trying a single password candidate. Key stretching also improves security in some real-world applications where the key length has been constrained, by mimicking a longer key length from the perspective of a brute-force attacker.

<span class="mw-page-title-main">Cryptography</span> Practice and study of secure communication techniques

Cryptography, or cryptology, is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications.

Computer security compromised by hardware failure is a branch of computer security applied to hardware. The objective of computer security includes protection of information and property from theft, corruption, or natural disaster, while allowing the information and property to remain accessible and productive to its intended users. Such secret information could be retrieved by different ways. This article focus on the retrieval of data thanks to misused hardware or hardware failure. Hardware could be misused or exploited to get secret data. This article collects main types of attack that can lead to data theft.

Datain use is an information technology term referring to active data which is stored in a non-persistent digital state typically in computer random-access memory (RAM), CPU caches, or CPU registers.

Intel Software Guard Extensions (SGX) is a set of instruction codes implementing trusted execution environment that are built into some Intel central processing units (CPUs). They allow user-level and operating system code to define protected private regions of memory, called enclaves. SGX is designed to be useful for implementing secure remote computation, secure web browsing, and digital rights management (DRM). Other applications include concealment of proprietary algorithms and of encryption keys.

<span class="mw-page-title-main">Meltdown (security vulnerability)</span> Microprocessor security vulnerability

Meltdown is one of the two original transient execution CPU vulnerabilities. Meltdown affects Intel x86 microprocessors, IBM POWER processors, and some ARM-based microprocessors. It allows a rogue process to read all memory, even when it is not authorized to do so.

<span class="mw-page-title-main">Spectre (security vulnerability)</span> Processor security vulnerability

Spectre refers to one of the two original transient execution CPU vulnerabilities, which involve microarchitectural timing side-channel attacks. These affect modern microprocessors that perform branch prediction and other forms of speculation. On most processors, the speculative execution resulting from a branch misprediction may leave observable side effects that may reveal private data to attackers. For example, if the pattern of memory accesses performed by such speculative execution depends on private data, the resulting state of the data cache constitutes a side channel through which an attacker may be able to extract information about the private data using a timing attack.

<span class="mw-page-title-main">Hardware-based encryption</span> Use of computer hardware to assist software in the process of data encryption

Hardware-based encryption is the use of computer hardware to assist software, or sometimes replace software, in the process of data encryption. Typically, this is implemented as part of the processor's instruction set. For example, the AES encryption algorithm can be implemented using the AES instruction set on the ubiquitous x86 architecture. Such instructions also exist on the ARM architecture. However, more unusual systems exist where the cryptography module is separate from the central processor, instead being implemented as a coprocessor, in particular a secure cryptoprocessor or cryptographic accelerator, of which an example is the IBM 4758, or its successor, the IBM 4764. Hardware implementations can be faster and less prone to exploitation than traditional software implementations, and furthermore can be protected against tampering.

Lazy FPU state leak, also referred to as Lazy FP State Restore or LazyFP, is a security vulnerability affecting Intel Core CPUs. The vulnerability is caused by a combination of flaws in the speculative execution technology present within the affected CPUs and how certain operating systems handle context switching on the floating point unit (FPU). By exploiting this vulnerability, a local process can leak the content of the FPU registers that belong to another process. This vulnerability is related to the Spectre and Meltdown vulnerabilities that were publicly disclosed in January 2018.


  1. 1 2 3 "Constant-Time Crypto". BearSSL. Retrieved 10 January 2017.
  2. "A beginner's guide to constant-time cryptography" . Retrieved 9 May 2021.
  3. David Brumley and Dan Boneh. Remote timing attacks are practical. USENIX Security Symposium, August 2003.
  4. See Percival, Colin, Cache Missing for Fun and Profit, 2005.
  5. Bernstein, Daniel J., Cache-timing attacks on AES, 2005.
  6. Horn, Jann (3 January 2018). "Reading privileged memory with a side-channel". googleprojectzero.blogspot.com.
  7. "Spectre systems FAQ". Meltdown and Spectre.
  8. "Security flaws put virtually all phones, computers at risk". Reuters. 4 January 2018.
  9. "Potential Impact on Processors in the POWER Family". IBM PSIRT Blog. 14 May 2019.
  10. "Consttime_memequal".

Further reading