MESH (cipher)

Last updated
MESH
General
Designers Nakahara, Rijmen, Preneel, Vandewalle
First published2002
Derived from IDEA
Cipher detail
Key sizes 128, 192, or 256 bits
Block sizes 64, 96, or 128 bits
Structure Lai–Massey scheme
Rounds8.5, 10.5, or 12.5
Best public cryptanalysis
2 rounds can be broken using 128, 161, or 225 known plaintexts

In cryptography, MESH is a block cipher designed in 2002 by Jorge Nakahara, Jr., Vincent Rijmen, Bart Preneel, and Joos Vandewalle. MESH is based directly on IDEA and uses the same basic operations.

MESH is actually a family of 3 variant ciphers with block sizes of 64, 96, and 128 bits. [1] The key size is twice the block size. The number of rounds is 8.5, 10.5, or 12.5, depending on the block size. The algorithm uses a Lai–Massey scheme based on IDEA's, but with a larger round structure, or "MA-box". MESH also has a more complex key schedule than IDEA, intended to prevent weak keys and other insecure patterns in subkeys.

Related Research Articles

Advanced Encryption Standard Standard for the encryption of electronic data

The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.

International Data Encryption Algorithm

In cryptography, the International Data Encryption Algorithm (IDEA), originally called Improved Proposed Encryption Standard (IPES), is a symmetric-key block cipher designed by James Massey of ETH Zurich and Xuejia Lai and was first described in 1991. The algorithm was intended as a replacement for the Data Encryption Standard (DES). IDEA is a minor revision of an earlier cipher Proposed Encryption Standard (PES).

In cryptography, RC4 is a stream cipher. While it is remarkable for its simplicity and speed in software, multiple vulnerabilities have been discovered in RC4, rendering it insecure. It is especially vulnerable when the beginning of the output keystream is not discarded, or when nonrandom or related keys are used. Particularly problematic uses of RC4 have led to very insecure protocols such as WEP.

In computer science and cryptography, Whirlpool is a cryptographic hash function. It was designed by Vincent Rijmen and Paulo S. L. M. Barreto, who first described it in 2000.

In cryptography, KHAZAD is a block cipher designed by Paulo S. L. M. Barreto together with Vincent Rijmen, one of the designers of the Advanced Encryption Standard (Rijndael). KHAZAD is named after Khazad-dûm, the fictional dwarven realm in the writings of J. R. R. Tolkien. KHAZAD was presented at the first NESSIE workshop in 2000, and, after some small changes, was selected as a finalist in the project.

In cryptography, SHARK is a block cipher identified as one of the predecessors of Rijndael.

In cryptography, MMB is a block cipher designed by Joan Daemen as an improved replacement for the IDEA cipher. Modular multiplication is the central element in the design. Weaknesses in the key schedule were identified by Eli Biham, and this, together with the cipher's not having been designed to resist linear cryptanalysis, meant that other designs were pursued instead, such as 3-Way.

MacGuffin (cipher)

In cryptography, MacGuffin is a block cipher created in 1994 by Bruce Schneier and Matt Blaze at a Fast Software Encryption workshop. It was intended as a catalyst for analysis of a new cipher structure, known as Generalized Unbalanced Feistel Networks (GUFNs). The cryptanalysis proceeded very quickly, so quickly that the cipher was broken at the same workshop by Vincent Rijmen and Bart Preneel.

Phelix is a high-speed stream cipher with a built-in single-pass message authentication code (MAC) functionality, submitted in 2004 to the eSTREAM contest by Doug Whiting, Bruce Schneier, Stefan Lucks, and Frédéric Muller. The cipher uses only the operations of addition modulo 232, exclusive or, and rotation by a fixed number of bits. Phelix uses a 256-bit key and a 128-bit nonce, claiming a design strength of 128 bits. Concerns have been raised over the ability to recover the secret key if the cipher is used incorrectly.

Akelarre is a block cipher proposed in 1996, combining the basic design of IDEA with ideas from RC5. It was shown to be susceptible to a ciphertext-only attack in 1997.

Introduced by Martin Hellman and Susan K. Langford in 1994, the differential-linear attack is a mix of both linear cryptanalysis and differential cryptanalysis.

Trivium (cipher)

Trivium is a synchronous stream cipher designed to provide a flexible trade-off between speed and gate count in hardware, and reasonably efficient software implementation.

Anubis is a block cipher designed by Vincent Rijmen and Paulo S. L. M. Barreto as an entrant in the NESSIE project, a former research program initiated by the European Commission in 2000 for the identification of new cryptographic algorithms. Although the cipher has not been included in the final NESSIE portfolio, its design is considered very strong, and no attacks have been found by 2004 after the project had been concluded. The cipher is not patented and has been released by the designers for free public use.

Panama is a cryptographic primitive which can be used both as a hash function and a stream cipher, but its hash function mode of operation has been broken and is not suitable for cryptographic use. Based on StepRightUp, it was designed by Joan Daemen and Craig Clapp and presented in the paper Fast Hashing and Stream Encryption with PANAMA on the Fast Software Encryption (FSE) conference 1998. The cipher has influenced several other designs, for example MUGI and SHA-3.

In cryptography, integral cryptanalysis is a cryptanalytic attack that is particularly applicable to block ciphers based on substitution–permutation networks. It was originally designed by Lars Knudsen as a dedicated attack against Square, so it is commonly known as the Square attack. It was also extended to a few other ciphers related to Square: CRYPTON, Rijndael, and SHARK. Stefan Lucks generalized the attack to what he called a saturation attack and used it to attack Twofish, which is not at all similar to Square, having a radically different Feistel network structure. Forms of integral cryptanalysis have since been applied to a variety of ciphers, including Hierocrypt, IDEA, Camellia, Skipjack, MISTY1, MISTY2, SAFER++, KHAZAD, and FOX.

In cryptography, DFC is a symmetric block cipher which was created in 1998 by a group of researchers from École Normale Supérieure, CNRS, and France Télécom and submitted to the AES competition.

In cryptography, Hierocrypt-L1 and Hierocrypt-3 are block ciphers created by Toshiba in 2000. They were submitted to the NESSIE project, but were not selected. Both algorithms were among the cryptographic techniques recommended for Japanese government use by CRYPTREC in 2003, however, both have been dropped to "candidate" by CRYPTREC revision in 2013.

In cryptography, ARIA is a block cipher designed in 2003 by a large group of South Korean researchers. In 2004, the Korean Agency for Technology and Standards selected it as a standard cryptographic technique.

This article summarizes publicly known attacks against block ciphers and stream ciphers. Note that there are perhaps attacks that are not publicly known, and not all entries may be up to date.

In cryptography, a known-key distinguishing attack is an attack model against symmetric ciphers, whereby an attacker who knows the key can find a structural property in cipher, where the transformation from plaintext to ciphertext is not random. There is no common formal definition for what such a transformation may be. The chosen-key distinguishing attack is strongly related, where the attacker can choose a key to introduce such transformations.

References

  1. The MESH Block Ciphers. Austria. p. 2.