Paillier cryptosystem

Last updated

The Paillier cryptosystem, invented by and named after Pascal Paillier in 1999, is a probabilistic asymmetric algorithm for public key cryptography. The problem of computing n-th residue classes is believed to be computationally difficult. The decisional composite residuosity assumption is the intractability hypothesis upon which this cryptosystem is based.

Contents

The scheme is an additive homomorphic cryptosystem; this means that, given only the public key and the encryption of and , one can compute the encryption of .

Algorithm

The scheme works as follows:

Key generation

  1. Choose two large prime numbers and randomly and independently of each other such that . This property is assured if both primes are of equal length. [1]
  2. Compute and . lcm means Least Common Multiple.
  3. Select random integer where
  4. Ensure divides the order of by checking the existence of the following modular multiplicative inverse: ,
where function is defined as .
Note that the notation does not denote the modular multiplication of times the modular multiplicative inverse of but rather the quotient of divided by , i.e., the largest integer value to satisfy the relation .

If using p,q of equivalent length, a simpler variant of the above key generation steps would be to set and , where . [1] The simpler variant is recommended for implementational purposes, because in the general form the calculation time of can be very high with sufficiently large primes p,q.

Encryption

  1. Let be a message to be encrypted where
  2. Select random where and .
    (Note: if you find a value that has , you can use this to calculate the private key: this is unlikely enough to ignore.)
  3. Compute ciphertext as:

Decryption

  1. Let be the ciphertext to decrypt, where
  2. Compute the plaintext message as:

As the original paper [2] points out, decryption is "essentially one exponentiation modulo ."

Homomorphic properties

A notable feature of the Paillier cryptosystem is its homomorphic properties along with its non-deterministic encryption (see Electronic voting in Applications for usage). As the encryption function is additively homomorphic, the following identities can be described:

The product of two ciphertexts will decrypt to the sum of their corresponding plaintexts,
The product of a ciphertext with a plaintext raising will decrypt to the sum of the corresponding plaintexts,
A ciphertext raised to the power of a plaintext will decrypt to the product of the two plaintexts,
More generally, a ciphertext raised to a constant k will decrypt to the product of the plaintext and the constant,

However, given the Paillier encryptions of two messages there is no known way to compute an encryption of the product of these messages without knowing the private key.

Background

Paillier cryptosystem exploits the fact that certain discrete logarithms can be computed easily.

For example, by binomial theorem,

This indicates that:

Therefore, if:

then

.

Thus:

,
where function is defined as (quotient of integer division) and .

Semantic security

The original cryptosystem as shown above does provide semantic security against chosen-plaintext attacks (IND-CPA). The ability to successfully distinguish the challenge ciphertext essentially amounts to the ability to decide composite residuosity. The so-called decisional composite residuosity assumption (DCRA) is believed to be intractable.

Because of the aforementioned homomorphic properties however, the system is malleable, and therefore does not enjoy the highest level of semantic security, protection against adaptive chosen-ciphertext attacks (IND-CCA2). Usually in cryptography the notion of malleability is not seen as an "advantage," but under certain applications such as secure electronic voting and threshold cryptosystems, this property may indeed be necessary.

Paillier and Pointcheval however went on to propose an improved cryptosystem that incorporates the combined hashing of message m with random r. Similar in intent to the Cramer–Shoup cryptosystem, the hashing prevents an attacker, given only c, from being able to change m in a meaningful way. Through this adaptation the improved scheme can be shown to be IND-CCA2 secure in the random oracle model.

Applications

Electronic voting

Semantic security is not the only consideration. There are situations under which malleability may be desirable. Secure electronic voting systems can utilize the above homomorphic properties. Consider a simple binary ("for" or "against") vote. Let m voters cast a vote of either 1 (for) or 0 (against). Each voter encrypts their choice before casting their vote. The election official takes the product of the m encrypted votes and then decrypts the result and obtains the value n, which is the sum of all the votes. The election official then knows that n people voted for and m-n people voted against. The role of the random r ensures that two equivalent votes will encrypt to the same value only with negligible likelihood, hence ensuring voter privacy.

Electronic cash

Another feature named in paper is the notion of self-blinding. This is the ability to change one ciphertext into another without changing the content of its decryption. This has application to the development of ecash, an effort originally spearheaded by David Chaum. Imagine paying for an item online without the vendor needing to know your credit card number, and hence your identity. The goal in both electronic cash and electronic voting, is to ensure the e-coin (likewise e-vote) is valid, while at the same time not disclosing the identity of the person with whom it is currently associated.

Electronic auction

The Paillier cryptosystem plays a crucial role in enhancing the security of electronic auctions. It prevents fraudulent activities such as dishonest auctioneers and collusion between bidders and auctioneers who manipulate bids. By ensuring the confidentiality of actual bidding values while revealing auction results, the Pailler cryptosystem successfully promotes fair practices. [3]

Threshold cryptosystem

The homomorphic property of Paillier cryptosystem is sometimes used to build Threshold ECDSA signature. [4]

See also

Related Research Articles

RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest that is widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who publicly described the algorithm in 1977. An equivalent system was developed secretly in 1973 at Government Communications Headquarters (GCHQ), the British signals intelligence agency, by the English mathematician Clifford Cocks. That system was declassified in 1997.

In cryptography, the ElGamal encryption system is an asymmetric key encryption algorithm for public-key cryptography which is based on the Diffie–Hellman key exchange. It was described by Taher Elgamal in 1985. ElGamal encryption is used in the free GNU Privacy Guard software, recent versions of PGP, and other cryptosystems. The Digital Signature Algorithm (DSA) is a variant of the ElGamal signature scheme, which should not be confused with ElGamal encryption.

The Merkle–Hellman knapsack cryptosystem was one of the earliest public key cryptosystems. It was published by Ralph Merkle and Martin Hellman in 1978. A polynomial time attack was published by Adi Shamir in 1984. As a result, the cryptosystem is now considered insecure.

Malleability is a property of some cryptographic algorithms. An encryption algorithm is "malleable" if it is possible to transform a ciphertext into another ciphertext which decrypts to a related plaintext. That is, given an encryption of a plaintext , it is possible to generate another ciphertext which decrypts to , for a known function , without necessarily knowing or learning .

The Rabin cryptosystem is a family of public-key encryption schemes based on a trapdoor function whose security, like that of RSA, is related to the difficulty of integer factorization.

The NTRUEncrypt public key cryptosystem, also known as the NTRU encryption algorithm, is an NTRU lattice-based alternative to RSA and elliptic curve cryptography (ECC) and is based on the shortest vector problem in a lattice.

In cryptography, a semantically secure cryptosystem is one where only negligible information about the plaintext can be feasibly extracted from the ciphertext. Specifically, any probabilistic, polynomial-time algorithm (PPTA) that is given the ciphertext of a certain message , and the message's length, cannot determine any partial information on the message with probability non-negligibly higher than all other PPTA's that only have access to the message length. This concept is the computational complexity analogue to Shannon's concept of perfect secrecy. Perfect secrecy means that the ciphertext reveals no information at all about the plaintext, whereas semantic security implies that any information revealed cannot be feasibly extracted.

The Cramer–Shoup system is an asymmetric key encryption algorithm, and was the first efficient scheme proven to be secure against adaptive chosen ciphertext attack using standard cryptographic assumptions. Its security is based on the computational intractability of the Decisional Diffie–Hellman assumption. Developed by Ronald Cramer and Victor Shoup in 1998, it is an extension of the ElGamal cryptosystem. In contrast to ElGamal, which is extremely malleable, Cramer–Shoup adds other elements to ensure non-malleability even against a resourceful attacker. This non-malleability is achieved through the use of a universal one-way hash function and additional computations, resulting in a ciphertext which is twice as large as in ElGamal.

The Goldwasser–Micali (GM) cryptosystem is an asymmetric key encryption algorithm developed by Shafi Goldwasser and Silvio Micali in 1982. GM has the distinction of being the first probabilistic public-key encryption scheme which is provably secure under standard cryptographic assumptions. However, it is not an efficient cryptosystem, as ciphertexts may be several hundred times larger than the initial plaintext. To prove the security properties of the cryptosystem, Goldwasser and Micali proposed the widely used definition of semantic security.

The Blum–Goldwasser (BG) cryptosystem is an asymmetric key encryption algorithm proposed by Manuel Blum and Shafi Goldwasser in 1984. Blum–Goldwasser is a probabilistic, semantically secure cryptosystem with a constant-size ciphertext expansion. The encryption algorithm implements an XOR-based stream cipher using the Blum-Blum-Shub (BBS) pseudo-random number generator to generate the keystream. Decryption is accomplished by manipulating the final state of the BBS generator using the private key, in order to find the initial seed and reconstruct the keystream.

Homomorphic encryption is a form of encryption that allows computations to be performed on encrypted data without first having to decrypt it. The resulting computations are left in an encrypted form which, when decrypted, result in an output that is identical to that produced had the operations been performed on the unencrypted data. Homomorphic encryption can be used for privacy-preserving outsourced storage and computation. This allows data to be encrypted and out-sourced to commercial cloud environments for processing, all while encrypted.

The Benaloh Cryptosystem is an extension of the Goldwasser-Micali cryptosystem (GM) created in 1985 by Josh (Cohen) Benaloh. The main improvement of the Benaloh Cryptosystem over GM is that longer blocks of data can be encrypted at once, whereas in GM each bit is encrypted individually.

The Naccache–Stern cryptosystem is a homomorphic public-key cryptosystem whose security rests on the higher residuosity problem. The Naccache–Stern cryptosystem was discovered by David Naccache and Jacques Stern in 1998.

In computational complexity theory, a computational hardness assumption is the hypothesis that a particular problem cannot be solved efficiently. It is not known how to prove (unconditional) hardness for essentially any useful problem. Instead, computer scientists rely on reductions to formally relate the hardness of a new or complicated problem to a computational hardness assumption about a problem that is better-understood.

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo where is an RSA modulus and a (positive) natural number. Paillier's scheme is the special case with . The order of can be divided by . Moreover, can be written as the direct product of . is cyclic and of order , while is isomorphic to . For encryption, the message is transformed into the corresponding coset of the factor group and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.

The Okamoto–Uchiyama cryptosystem is a public key cryptosystem proposed in 1998 by Tatsuaki Okamoto and Shigenori Uchiyama. The system works in the multiplicative group of integers modulo n, , where n is of the form p2q and p and q are large primes.

In cryptography, a three-pass protocol for sending messages is a framework which allows one party to securely send a message to a second party without the need to exchange or distribute encryption keys. Such message protocols should not be confused with various other algorithms which use 3 passes for authentication.

The Schmidt-Samoa cryptosystem is an asymmetric cryptographic technique, whose security, like Rabin depends on the difficulty of integer factorization. Unlike Rabin this algorithm does not produce an ambiguity in the decryption at a cost of encryption speed.

In discrete mathematics, ideal lattices are a special class of lattices and a generalization of cyclic lattices. Ideal lattices naturally occur in many parts of number theory, but also in other areas. In particular, they have a significant place in cryptography. Micciancio defined a generalization of cyclic lattices as ideal lattices. They can be used in cryptosystems to decrease by a square root the number of parameters necessary to describe a lattice, making them more efficient. Ideal lattices are a new concept, but similar lattice classes have been used for a long time. For example, cyclic lattices, a special case of ideal lattices, are used in NTRUEncrypt and NTRUSign.

Coppersmith's attack describes a class of cryptographic attacks on the public-key cryptosystem RSA based on the Coppersmith method. Particular applications of the Coppersmith method for attacking RSA include cases when the public exponent e is small or when partial knowledge of a prime factor of the secret key is available.

References

Notes

  1. 1 2 Jonathan Katz, Yehuda Lindell, "Introduction to Modern Cryptography: Principles and Protocols," Chapman & Hall/CRC, 2007
  2. Paillier, Pascal (1999). "Public-Key Cryptosystems Based on Composite Degree Residuosity Classes". Advances in Cryptology — EUROCRYPT '99. Lecture Notes in Computer Science. Vol. 1592. Springer. pp. 223–238. doi: 10.1007/3-540-48910-X_16 . ISBN   978-3-540-65889-4.
  3. Pan, M., Sun, J., & Fang, Y. (2011). Purging the Back-Room Dealing: Secure Spectrum Auction Leveraging Paillier Cryptosystem. IEEE Journal on Selected Areas in Communications, 29(4), 866–876. https://doi.org/10.1109/JSAC.2011.110417
  4. Canetti, Ran; Gennaro, Rosario; Goldfeder, Steven; Makriyannis, Nikolaos; Peled, Udi (30 October 2020). "UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable Aborts". Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. Association for Computing Machinery. pp. 1769–1787. doi:10.1145/3372297.3423367. ISBN   9781450370899. S2CID   226228099.