Binomial theorem

Last updated
The binomial coefficient appears as the kth entry in the nth row of Pascal's triangle (where the top is the 0th row ). Each entry is the sum of the two above it.

In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial (x + y)n into a sum involving terms of the form axbyc, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b. For example, for n = 4,

Contents

The coefficient a in the term of axbyc is known as the binomial coefficient or (the two have the same value). These coefficients for varying n and b can be arranged to form Pascal's triangle. These numbers also occur in combinatorics, where gives the number of different combinations (i.e. subsets) of b elements that can be chosen from an n-element set. Therefore is usually pronounced as "n choose b".

History

Special cases of the binomial theorem were known since at least the 4th century BC when Greek mathematician Euclid mentioned the special case of the binomial theorem for exponent . [1] Greek mathematician Diophantus cubed various binomials, including . [1] Indian mathematician Aryabhata's method for finding cube roots, from around 510 CE, suggests that he knew the binomial formula for exponent . [1]

Binomial coefficients, as combinatorial quantities expressing the number of ways of selecting k objects out of n without replacement, were of interest to ancient Indian mathematicians. The earliest known reference to this combinatorial problem is the Chandaḥśāstra by the Indian lyricist Pingala (c. 200 BC), which contains a method for its solution. [2] :230 The commentator Halayudha from the 10th century AD explains this method. [2] :230 By the 6th century AD, the Indian mathematicians probably knew how to express this as a quotient , [3] and a clear statement of this rule can be found in the 12th century text Lilavati by Bhaskara. [3]

The first known formulation of the binomial theorem and the table of binomial coefficients appears in a work by Al-Karaji, quoted by Al-Samaw'al in his "al-Bahir". [4] [5] [6] Al-Karaji described the triangular pattern of the binomial coefficients [7] and also provided a mathematical proof of both the binomial theorem and Pascal's triangle, using an early form of mathematical induction. [7] The Persian poet and mathematician Omar Khayyam was probably familiar with the formula to higher orders, although many of his mathematical works are lost. [1] The binomial expansions of small degrees were known in the 13th century mathematical works of Yang Hui [8] and also Chu Shih-Chieh. [1] Yang Hui attributes the method to a much earlier 11th century text of Jia Xian, although those writings are now also lost. [2] :142

In 1544, Michael Stifel introduced the term "binomial coefficient" and showed how to use them to express in terms of , via "Pascal's triangle". [9] Blaise Pascal studied the eponymous triangle comprehensively in his Traité du triangle arithmétique. [10] However, the pattern of numbers was already known to the European mathematicians of the late Renaissance, including Stifel, Niccolò Fontana Tartaglia, and Simon Stevin. [9]

Isaac Newton is generally credited with discovering the generalized binomial theorem, valid for any real exponent, in 1665. [9] [11] It was discovered independently in 1670 by James Gregory. [12]

Statement

According to the theorem, the expansion of any nonnegative integer power n of the binomial x + y is a sum of the form where each is a positive integer known as a binomial coefficient, defined as

This formula is also referred to as the binomial formula or the binomial identity. Using summation notation, it can be written more concisely as

The final expression follows from the previous one by the symmetry of x and y in the first expression, and by comparison it follows that the sequence of binomial coefficients in the formula is symmetrical,

A simple variant of the binomial formula is obtained by substituting 1 for y, so that it involves only a single variable. In this form, the formula reads

Examples

Here are the first few cases of the binomial theorem: In general, for the expansion of (x + y)n on the right side in the nth row (numbered so that the top row is the 0th row):

An example illustrating the last two points: with .

A simple example with a specific positive value of y:

A simple example with a specific negative value of y:

Geometric explanation

Visualisation of binomial expansion up to the 4th power Binomial theorem visualisation.svg
Visualisation of binomial expansion up to the 4th power

For positive values of a and b, the binomial theorem with n = 2 is the geometrically evident fact that a square of side a + b can be cut into a square of side a, a square of side b, and two rectangles with sides a and b. With n = 3, the theorem states that a cube of side a + b can be cut into a cube of side a, a cube of side b, three a × a × b rectangular boxes, and three a × b × b rectangular boxes.

In calculus, this picture also gives a geometric proof of the derivative [13] if one sets and interpreting b as an infinitesimal change in a, then this picture shows the infinitesimal change in the volume of an n-dimensional hypercube, where the coefficient of the linear term (in ) is the area of the n faces, each of dimension n 1: Substituting this into the definition of the derivative via a difference quotient and taking limits means that the higher order terms, and higher, become negligible, and yields the formula interpreted as

"the infinitesimal rate of change in volume of an n-cube as side length varies is the area of n of its (n 1)-dimensional faces".

If one integrates this picture, which corresponds to applying the fundamental theorem of calculus, one obtains Cavalieri's quadrature formula, the integral – see proof of Cavalieri's quadrature formula for details. [13]

Binomial coefficients

The coefficients that appear in the binomial expansion are called binomial coefficients. These are usually written and pronounced "n choose k".

Formulas

The coefficient of xnkyk is given by the formula which is defined in terms of the factorial function n!. Equivalently, this formula can be written with k factors in both the numerator and denominator of the fraction. Although this formula involves a fraction, the binomial coefficient is actually an integer.

Combinatorial interpretation

The binomial coefficient can be interpreted as the number of ways to choose k elements from an n-element set. This is related to binomials for the following reason: if we write (x + y)n as a product then, according to the distributive law, there will be one term in the expansion for each choice of either x or y from each of the binomials of the product. For example, there will only be one term xn, corresponding to choosing x from each binomial. However, there will be several terms of the form xn−2y2, one for each way of choosing exactly two binomials to contribute a y. Therefore, after combining like terms, the coefficient of xn−2y2 will be equal to the number of ways to choose exactly 2 elements from an n-element set.

Proofs

Combinatorial proof

Expanding (x + y)n yields the sum of the 2n products of the form e1e2 ... en where each ei is x or y. Rearranging factors shows that each product equals xnkyk for some k between 0 and n. For a given k, the following are proved equal in succession:

This proves the binomial theorem.

Example

The coefficient of xy2 in equals because there are three x,y strings of length 3 with exactly two y's, namely, corresponding to the three 2-element subsets of {1, 2, 3}, namely, where each subset specifies the positions of the y in a corresponding string.

Inductive proof

Induction yields another proof of the binomial theorem. When n = 0, both sides equal 1, since x0 = 1 and Now suppose that the equality holds for a given n; we will prove it for n + 1. For j, k ≥ 0, let [f(x, y)]j,k denote the coefficient of xjyk in the polynomial f(x, y). By the inductive hypothesis, (x + y)n is a polynomial in x and y such that [(x + y)n]j,k is if j + k = n, and 0 otherwise. The identity shows that (x + y)n+1 is also a polynomial in x and y, and since if j + k = n + 1, then (j − 1) + k = n and j + (k − 1) = n. Now, the right hand side is by Pascal's identity. [14] On the other hand, if j + kn + 1, then (j – 1) + kn and j + (k – 1) ≠ n, so we get 0 + 0 = 0. Thus which is the inductive hypothesis with n + 1 substituted for n and so completes the inductive step.

Generalizations

Newton's generalized binomial theorem

Around 1665, Isaac Newton generalized the binomial theorem to allow real exponents other than nonnegative integers. (The same generalization also applies to complex exponents.) In this generalization, the finite sum is replaced by an infinite series. In order to do this, one needs to give meaning to binomial coefficients with an arbitrary upper index, which cannot be done using the usual formula with factorials. However, for an arbitrary number r, one can define where is the Pochhammer symbol, here standing for a falling factorial. This agrees with the usual definitions when r is a nonnegative integer. Then, if x and y are real numbers with |x| > |y|, [Note 1] and r is any complex number, one has

When r is a nonnegative integer, the binomial coefficients for k > r are zero, so this equation reduces to the usual binomial theorem, and there are at most r + 1 nonzero terms. For other values of r, the series typically has infinitely many nonzero terms.

For example, r = 1/2 gives the following series for the square root:

Taking r = 1, the generalized binomial series gives the geometric series formula, valid for |x| < 1:

More generally, with r = −s, we have for |x| < 1: [15]

So, for instance, when s = 1/2,

Replacing x with -x yields:

So, for instance, when s = 1/2, we have for |x| < 1:

Further generalizations

The generalized binomial theorem can be extended to the case where x and y are complex numbers. For this version, one should again assume |x| > |y| [Note 1] and define the powers of x + y and x using a holomorphic branch of log defined on an open disk of radius |x| centered at x. The generalized binomial theorem is valid also for elements x and y of a Banach algebra as long as xy = yx, and x is invertible, and y/x < 1.

A version of the binomial theorem is valid for the following Pochhammer symbol-like family of polynomials: for a given real constant c, define and for Then [16] The case c = 0 recovers the usual binomial theorem.

More generally, a sequence of polynomials is said to be of binomial type if

An operator on the space of polynomials is said to be the basis operator of the sequence if and for all . A sequence is binomial if and only if its basis operator is a Delta operator. [17] Writing for the shift by operator, the Delta operators corresponding to the above "Pochhammer" families of polynomials are the backward difference for , the ordinary derivative for , and the forward difference for .

Multinomial theorem

The binomial theorem can be generalized to include powers of sums with more than two terms. The general version is

where the summation is taken over all sequences of nonnegative integer indices k1 through km such that the sum of all ki is n. (For each term in the expansion, the exponents must add up to n). The coefficients are known as multinomial coefficients, and can be computed by the formula

Combinatorially, the multinomial coefficient counts the number of different ways to partition an n-element set into disjoint subsets of sizes k1, ..., km.

Multi-binomial theorem

When working in more dimensions, it is often useful to deal with products of binomial expressions. By the binomial theorem this is equal to

This may be written more concisely, by multi-index notation, as

General Leibniz rule

The general Leibniz rule gives the nth derivative of a product of two functions in a form similar to that of the binomial theorem: [18]

Here, the superscript (n) indicates the nth derivative of a function, . If one sets f(x) = eax and g(x) = ebx, cancelling the common factor of e(a + b)x from each term gives the ordinary binomial theorem. [19]

Applications

Multiple-angle identities

For the complex numbers the binomial theorem can be combined with de Moivre's formula to yield multiple-angle formulas for the sine and cosine. According to De Moivre's formula,

Using the binomial theorem, the expression on the right can be expanded, and then the real and imaginary parts can be taken to yield formulas for cos(nx) and sin(nx). For example, since But De Moivre's formula identifies the left side with , so which are the usual double-angle identities. Similarly, since De Moivre's formula yields In general, and There are also similar formulas using Chebyshev polynomials.

Series for e

The number e is often defined by the formula

Applying the binomial theorem to this expression yields the usual infinite series for e. In particular:

The kth term of this sum is

As n → ∞, the rational expression on the right approaches 1, and therefore

This indicates that e can be written as a series:

Indeed, since each term of the binomial expansion is an increasing function of n, it follows from the monotone convergence theorem for series that the sum of this infinite series is equal to e.

Probability

The binomial theorem is closely related to the probability mass function of the negative binomial distribution. The probability of a (countable) collection of independent Bernoulli trials with probability of success all not happening is

An upper bound for this quantity is [20]

In abstract algebra

The binomial theorem is valid more generally for two elements x and y in a ring, or even a semiring, provided that xy = yx. For example, it holds for two n × n matrices, provided that those matrices commute; this is useful in computing powers of a matrix. [21]

The binomial theorem can be stated by saying that the polynomial sequence {1, x, x2, x3, ...} is of binomial type.

See also

Notes

  1. 1 2 This is to guarantee convergence. Depending on r, the series may also converge sometimes when |x| = |y|.

Related Research Articles

<span class="mw-page-title-main">Binomial distribution</span> Probability distribution

In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success or failure. A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the binomial test of statistical significance.

<span class="mw-page-title-main">Binomial coefficient</span> Number of subsets of a given size

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula

In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. More formally, a k-combination of a set S is a subset of k distinct elements of S. So, two combinations are identical if and only if each combination has the same members. If the set has n elements, the number of k-combinations, denoted by or , is equal to the binomial coefficient

In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, India, China, Germany, and Italy.

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

<span class="mw-page-title-main">Legendre polynomials</span> System of complete and orthogonal polynomials

In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications.

In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation. If the values of the first numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation.

In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Generating functions are often expressed in closed form, by some expression involving operations on the formal series.

<span class="mw-page-title-main">Chebyshev polynomials</span> Polynomial sequence

The Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as and . They can be defined in several equivalent ways, one of which starts with trigonometric functions:

In mathematics, Bertrand's postulate states that, for each , there is a prime such that . First conjectured in 1845 by Joseph Bertrand, it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan.

In mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials.

Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.

In mathematics, the binomial series is a generalization of the polynomial that comes from a binomial formula expression like for a nonnegative integer . Specifically, the binomial series is the MacLaurin series for the function , where and . Explicitly,

In mathematics, the Gaussian binomial coefficients are q-analogs of the binomial coefficients. The Gaussian binomial coefficient, written as or , is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian .

<span class="mw-page-title-main">Central binomial coefficient</span> Sequence of numbers ((2n) choose (n))

In mathematics the nth central binomial coefficient is the particular binomial coefficient

In mathematics, Pascal's rule is a combinatorial identity about binomial coefficients. It states that for positive natural numbers n and k, where is a binomial coefficient; one interpretation of the coefficient of the xk term in the expansion of (1 + x)n. There is no restriction on the relative sizes of n and k, since, if n < k the value of the binomial coefficient is zero and the identity remains valid.

In number theory, Lucas's theorem expresses the remainder of division of the binomial coefficient by a prime number p in terms of the base p expansions of the integers m and n.

In combinatorics, stars and bars is a graphical aid for deriving certain combinatorial theorems. It can be used to solve many simple counting problems, such as how many ways there are to put n indistinguishable balls into k distinguishable bins.

In mathematics, the Mittag-Leffler polynomials are the polynomials gn(x) or Mn(x) studied by Mittag-Leffler (1891).

In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper,.

References

  1. 1 2 3 4 5 Coolidge, J. L. (1949). "The Story of the Binomial Theorem". The American Mathematical Monthly. 56 (3): 147–157. doi:10.2307/2305028. JSTOR   2305028.
  2. 1 2 3 Jean-Claude Martzloff; S.S. Wilson; J. Gernet; J. Dhombres (1987). A history of Chinese mathematics. Springer.
  3. 1 2 Biggs, N. L. (1979). "The roots of combinatorics". Historia Math. 6 (2): 109–136. doi: 10.1016/0315-0860(79)90074-0 .
  4. Yadegari, Mohammad (1980). "The Binomial Theorem: A Widespread Concept in Medieval Islamic Mathematics". Historia Mathematica. 7 (4): 401–406. doi: 10.1016/0315-0860(80)90004-X .
  5. Stillwell, John (2015). "Taming the unknown. A history of algebra ... by Victor J. Katz and Karen Hunger Parshall". Bulletin of the American Mathematical Society (Book review). 52 (4): 725–731. doi: 10.1090/S0273-0979-2015-01491-6 . p. 727: However, algebra advanced in other respects. Around 1000, al-Karaji stated the binomial theorem
  6. Rashed, Roshdi (1994). The Development of Arabic Mathematics: Between Arithmetic and Algebra. Kluwer. p. 63. ISBN   0-7923-2565-6.
  7. 1 2 O'Connor, John J.; Robertson, Edmund F., "Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji", MacTutor History of Mathematics Archive , University of St Andrews
  8. Landau, James A. (1999-05-08). "Historia Matematica Mailing List Archive: Re: [HM] Pascal's Triangle". Archives of Historia Matematica. Archived from the original (mailing list email) on 2021-02-24. Retrieved 2007-04-13.
  9. 1 2 3 Kline, Morris (1972). History of mathematical thought. Oxford University Press. p. 273.
  10. Katz, Victor (2009). "14.3: Elementary Probability". A History of Mathematics: An Introduction. Addison-Wesley. p. 491. ISBN   978-0-321-38700-4.
  11. Bourbaki, N. (18 November 1998). Elements of the History of Mathematics Paperback . Translated by J. Meldrum. ISBN   978-3-540-64767-6.
  12. Stillwell, John (2010). Mathematics and its history (third ed.). Springer. p. 186. ISBN   978-1-4419-6052-8.
  13. 1 2 Barth, Nils R. (2004). "Computing Cavalieri's Quadrature Formula by a Symmetry of the n-Cube". The American Mathematical Monthly. 111 (9): 811–813. doi:10.2307/4145193. ISSN   0002-9890. JSTOR   4145193.
  14. Binomial theorem – inductive proofs Archived February 24, 2015, at the Wayback Machine
  15. Weisstein, Eric W. "Negative Binomial Series". Wolfram MathWorld.
  16. Sokolowsky, Dan; Rennie, Basil C. (February 1979). "Problem 352". Crux Mathematicorum. 5 (2): 55–56.
  17. Aigner, Martin (1997) [Reprint of the 1979 Edition]. Combinatorial Theory . Springer. p.  105. ISBN   3-540-61787-6.
  18. Olver, Peter J. (2000). Applications of Lie Groups to Differential Equations. Springer. pp. 318–319. ISBN   9780387950006.
  19. Spivey, Michael Z. (2019). The Art of Proving Binomial Identities. CRC Press. p. 71. ISBN   978-1351215800.
  20. Cover, Thomas M.; Thomas, Joy A. (2001-01-01). Data Compression. John Wiley & Sons, Inc. p. 320. doi:10.1002/0471200611.ch5. ISBN   9780471200611.
  21. Artin, Algebra, 2nd edition, Pearson, 2018, equation (4.7.11).
  22. "Arquivo Pessoa: Obra Édita - O binómio de Newton é tão belo como a Vénus de Milo". arquivopessoa.net.

Further reading