Arithmetico-geometric sequence

Last updated

In mathematics, arithmetico-geometric sequence is the result of term-by-term multiplication of a geometric progression with the corresponding terms of an arithmetic progression. Put plainly, the nth term of an arithmetico-geometric sequence is the product of the nth term of an arithmetic sequence and the nth term of a geometric one. [1] Arithmetico-geometric sequences arise in various applications, such as the computation of expected values in probability theory. For instance, the sequence

Contents

is an arithmetico-geometric sequence. The arithmetic component appears in the numerator (in blue), and the geometric one in the denominator (in green).

The summation of this infinite sequence is known as an arithmetico-geometric series, and its most basic form has been called Gabriel's staircase: [2] [3]

The denomination may also be applied to different objects presenting characteristics of both arithmetic and geometric sequences; for instance the French notion of arithmetico-geometric sequence refers to sequences of the form , which generalise both arithmetic and geometric sequences. Such sequences are a special case of linear difference equations.

Terms of the sequence

The first few terms of an arithmetico-geometric sequence composed of an arithmetic progression (in blue) with difference and initial value and a geometric progression (in green) with initial value and common ratio are given by: [4]

Example

For instance, the sequence

is defined by , , and .

Sum of the terms

The sum of the first n terms of an arithmetico-geometric sequence has the form

where and are the ith terms of the arithmetic and the geometric sequence, respectively.

This sum has the closed-form expression

Proof

Multiplying, [4]

by r, gives

Subtracting rSn from Sn, and using the technique of telescoping series gives

where the last equality results of the expression for the sum of a geometric series. Finally dividing through by 1 − r gives the result.

Infinite series

If −1 < r < 1, then the sum S of the arithmetico-geometric series, that is to say, the sum of all the infinitely many terms of the progression, is given by [4]

If r is outside of the above range, the series either

Example: application to expected values

For instance, the sum

,

being the sum of an arithmetico-geometric series defined by , , and , converges to .

This sequence corresponds to the expected number of coin tosses before obtaining "tails". The probability of obtaining tails for the first time at the kth toss is as follows:

.

Therefore, the expected number of tosses is given by

.

Related Research Articles

<span class="mw-page-title-main">Arithmetic–geometric mean</span> Mathematical function of two positive real arguments

In mathematics, the arithmetic–geometric mean of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential, trigonometric functions, and other special functions, as well as some mathematical constants, in particular, computing π.

In mathematics, the Bernoulli numbersBn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function.

<span class="mw-page-title-main">Geometric series</span> Sum of an (infinite) geometric progression

In mathematics, a geometric series is the sum of an infinite number of terms that have a constant ratio between successive terms. For example, the series

<span class="mw-page-title-main">Geometric mean</span> N-th root of the product of n numbers

In mathematics, the geometric mean is a mean or average which indicates a central tendency of a finite set of real numbers by using the product of their values. The geometric mean is defined as the nth root of the product of n numbers, i.e., for a set of numbers a1, a2, ..., an, the geometric mean is defined as

In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and

<span class="mw-page-title-main">Dihedral group</span> Group of symmetries of a regular polygon

In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry.

In mathematics, the harmonic series is the infinite series formed by summing all positive unit fractions:

In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

<span class="mw-page-title-main">Arithmetic progression</span> Sequence of numbers

An arithmetic progression or arithmetic sequence (AP) is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that arithmetic progression. For instance, the sequence 5, 7, 9, 11, 13, 15,. .. is an arithmetic progression with a common difference of 2.

<span class="mw-page-title-main">Divergence of the sum of the reciprocals of the primes</span> Theorem

The sum of the reciprocals of all prime numbers diverges; that is:

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi. Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later.

<span class="mw-page-title-main">AM–GM inequality</span> Arithmetic mean is greater than or equal to geometric mean

In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and further, that the two means are equal if and only if every number in the list is the same.

<span class="mw-page-title-main">Vieta's formulas</span> Relating coefficients and roots of a polynomial

In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. They are named after François Viète.

<span class="mw-page-title-main">Lambert series</span> Mathematical term

In mathematics, a Lambert series, named for Johann Heinrich Lambert, is a series taking the form

The Engel expansion of a positive real number x is the unique non-decreasing sequence of positive integers such that

<span class="mw-page-title-main">Lemniscate elliptic functions</span> Mathematical functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

In number theory, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula

A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic ; if this sequence consists only of zeros, the decimal is said to be terminating, and is not considered as repeating. It can be shown that a number is rational if and only if its decimal representation is repeating or terminating. For example, the decimal representation of 1/3 becomes periodic just after the decimal point, repeating the single digit "3" forever, i.e. 0.333.... A more complicated example is 3227/555, whose decimal becomes periodic at the second digit following the decimal point and then repeats the sequence "144" forever, i.e. 5.8144144144.... Another example of this is 593/53, which becomes periodic after the decimal point, repeating the 13-digit pattern "1886792452830" forever, i.e. 11.18867924528301886792452830....

Volume of an <i>n</i>-ball Size of a mathematical ball

In geometry, a ball is a region in a space comprising all points within a fixed distance, called the radius, from a given point; that is, it is the region enclosed by a sphere or hypersphere. An n-ball is a ball in an n-dimensional Euclidean space. The volume of a n-ball is the Lebesgue measure of this ball, which generalizes to any dimension the usual volume of a ball in 3-dimensional space. The volume of a n-ball of radius R is where is the volume of the unit n-ball, the n-ball of radius 1.

<span class="mw-page-title-main">Geometric progression</span> Mathematical sequence of numbers

A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with common ratio 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with common ratio 1/2.

References

  1. "Arithmetic-Geometric Progression | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2021-04-21.
  2. Swain, Stuart G. (2018). "Proof Without Words: Gabriel's Staircase". Mathematics Magazine. 67 (3): 209. doi:10.1080/0025570X.1994.11996214. ISSN   0025-570X.
  3. Edgar, Tom (2018). "Staircase Series". Mathematics Magazine. 91 (2): 92–95. doi:10.1080/0025570X.2017.1415584. ISSN   0025-570X. S2CID   218542483.
  4. 1 2 3 K. F. Riley; M. P. Hobson; S. J. Bence (2010). Mathematical methods for physics and engineering (3rd ed.). Cambridge University Press. p.  118. ISBN   978-0-521-86153-3.

Further reading