Precalculus

Last updated
Diagram for the deriving the power-reducing formula for the sine function Diagram showing how to derive the power reducing formula for sine.svg
Diagram for the deriving the power-reducing formula for the sine function

In mathematics education, precalculus is a course, or a set of courses, that includes algebra and trigonometry at a level which is designed to prepare students for the study of calculus, thus the name precalculus. Schools often distinguish between algebra and trigonometry as two separate parts of the coursework. [1]

Contents

Concept

For students to succeed at finding the derivatives and antiderivatives with calculus, they will need facility with algebraic expressions, particularly in modification and transformation of such expressions. Leonhard Euler wrote the first precalculus book in 1748 called Introductio in analysin infinitorum (Latin: Introduction to the Analysis of the Infinite), which "was meant as a survey of concepts and methods in analysis and analytic geometry preliminary to the study of differential and integral calculus." [2] He began with the fundamental concepts of variables and functions. His innovation is noted for its use of exponentiation to introduce the transcendental functions. The general logarithm, to an arbitrary positive base, Euler presents as the inverse of an exponential function.

Then the natural logarithm is obtained by taking as base "the number for which the hyperbolic logarithm is one", sometimes called Euler's number, and written . This appropriation of the significant number from Grégoire de Saint-Vincent’s calculus suffices to establish the natural logarithm. This part of precalculus prepares the student for integration of the monomial in the instance of .

Today's precalculus text computes as the limit . An exposition on compound interest in financial mathematics may motivate this limit. Another difference in the modern text is avoidance of complex numbers, except as they may arise as roots of a quadratic equation with a negative discriminant, or in Euler's formula as application of trigonometry. Euler used not only complex numbers but also infinite series in his precalculus. Today's course may cover arithmetic and geometric sequences and series, but not the application by Saint-Vincent to gain his hyperbolic logarithm, which Euler used to finesse his precalculus.

Variable content

Precalculus prepares students for calculus somewhat differently from the way that pre-algebra prepares students for algebra. While pre-algebra often has extensive coverage of basic algebraic concepts, precalculus courses might see only small amounts of calculus concepts, if at all, and often involves covering algebraic topics that might not have been given attention in earlier algebra courses. Some precalculus courses might differ with others in terms of content. For example, an honors-level course might spend more time on conic sections, Euclidean vectors, and other topics needed for calculus, used in fields such as medicine or engineering. A college preparatory/regular class might focus on topics used in business-related careers, such as matrices, or power functions.

A standard course considers functions, function composition, and inverse functions, often in connection with sets and real numbers. In particular, polynomials and rational functions are developed. Algebraic skills are exercised with trigonometric functions and trigonometric identities. The binomial theorem, polar coordinates, parametric equations, and the limits of sequences and series are other common topics of precalculus. Sometimes the mathematical induction method of proof for propositions dependent upon a natural number may be demonstrated, but generally coursework involves exercises rather than theory.

Sample texts

Online access

See also

Related Research Articles

<span class="mw-page-title-main">Euler's formula</span> Complex exponential in terms of sine and cosine

Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively. This complex exponential function is sometimes denoted cis x. The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case.

<span class="texhtml mvar" style="font-style:italic;">e</span> (mathematical constant) Constant value used in mathematics

The number e is a mathematical constant approximately equal to 2.71828 that can be characterized in many ways. It is the base of the natural logarithm function. It is the limit of as n tends to infinity, an expression that arises in the computation of compound interest. It is the value at 1 of the (natural) exponential function, commonly denoted It is also the sum of the infinite series There are various other characterizations; see § Definitions and § Representations.

<span class="mw-page-title-main">Exponential function</span> Mathematical function, denoted exp(x) or e^x

The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number, but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".

In mathematics, an elementary function is a function of a single variable that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses.

<span class="mw-page-title-main">Logarithm</span> Mathematical function, inverse of an exponential function

In mathematics, the logarithm is the inverse function to exponentiation. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base  of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logbx. When the base is clear from the context or is irrelevant it is sometimes written log x.

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation whose coefficients are functions of the independent variable that can be written using the basic operations of addition, subtraction, multiplication, and division. This is in contrast to an algebraic function.

<span class="mw-page-title-main">Identity (mathematics)</span> Equation that is satisfied for all values of the variables

In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B produce the same value for all values of the variables within a certain range of validity. In other words, A = B is an identity if A and B define the same functions, and an identity is an equality between functions that are differently defined. For example, and are identities. Identities are sometimes indicated by the triple bar symbol instead of =, the equals sign. Formally, an identity is a universally quantified equality.

In mathematics, an expression or equation is in closed form if it is formed with constants, variables and a finite set of basic functions connected by arithmetic operations and function composition. Commonly, the allowed functions are nth root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context.

<span class="mw-page-title-main">Hyperbolic sector</span> Region of the Cartesian plane bounded by a hyperbola and two radii

A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola. A hyperbolic sector in standard position has a = 1 and b > 1.

<span class="mw-page-title-main">Hyperbolic angle</span> Argument of the hyperbolic functions

In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic functions as coordinates. In mathematics, hyperbolic angle is an invariant measure as it is preserved under hyperbolic rotation.

<span class="mw-page-title-main">Outline of trigonometry</span> Overview of and topical guide to trigonometry

The following outline is provided as an overview of and topical guide to trigonometry:

The 18th-century Swiss mathematician Leonhard Euler (1707–1783) is among the most prolific and successful mathematicians in the history of the field. His seminal work had a profound impact in numerous areas of mathematics and he is widely credited for introducing and popularizing modern notation and terminology.

<span class="mw-page-title-main">Trigonometry</span> Area of geometry, about angles and lengths

Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios such as sine.

<i>Introductio in analysin infinitorum</i> Book by Leonhard Euler

Introductio in analysin infinitorum is a two-volume work by Leonhard Euler which lays the foundations of mathematical analysis. Written in Latin and published in 1748, the Introductio contains 18 chapters in the first part and 22 chapters in the second. It has Eneström numbers E101 and E102.

<span class="mw-page-title-main">Mathematics education in the United States</span> Overview of mathematics education in the United States

Mathematics education in the United States varies considerably from one state to the next, and even within a single state. However, with the adoption of the Common Core Standards in most states and the District of Columbia beginning in 2010, mathematics content across the country has moved into closer agreement for each grade level. The SAT, a standardized university entrance exam, has been reformed to better reflect the contents of the Common Core. However, many students take alternatives to the traditional pathways, including accelerated tracks. As of 2023, twenty-seven states require students to pass three math courses before graduation from high school, while seventeen states and the District of Columbia require four. A typical sequence of secondary-school courses in mathematics reads: Pre-Algebra, Algebra I, Geometry, Algebra II, Pre-calculus, and Calculus or Statistics. However, some students enroll in integrated programs while many complete high school without passing Calculus or Statistics. At the other end, counselors at competitive public or private high schools usually encourage talented and ambitious students to take Calculus regardless of future plans in order to increase their chances of getting admitted to a prestigious university and their parents enroll them in enrichment programs in mathematics.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. Cangelosi, J. S. (2012). Teaching mathematics in secondary and middle school, an interactive approach. Prentice Hall.
  2. Bos, H. J. M. (1980). "Chapter 2: Newton, Leibniz and the Leibnizian tradition chapter 2". In Grattan-Guinness, Ivor (ed.). From the Calculus to Set Theory, 1630 – 1910: An Introductory History. Duckworth Overlook. p. 76. ISBN   0-7156-1295-6.