In mathematics education, ethnomathematics is the study of the relationship between mathematics and culture. [1] Often associated with "cultures without written expression", [2] it may also be defined as "the mathematics which is practised among identifiable cultural groups". [3] It refers to a broad cluster of ideas ranging from distinct numerical and mathematical systems to multicultural mathematics education. The goal of ethnomathematics is to contribute both to the understanding of culture and the understanding of mathematics, and mainly to lead to an appreciation of the connections between the two.
The term "ethnomathematics" was introduced by Brazilian educator and mathematician Ubiratan D'Ambrosio in 1977 during a presentation for the American Association for the Advancement of Science. Since D'Ambrosio put forth the term, there has been debate as to its precise definition. [4] ).
The following is a sampling of some of the definitions of ethnomathematics proposed between 1985 and 2006:
Some of the systems for representing numbers in previous and present cultures are well known. Roman numerals use a few letters of the alphabet to represent numbers up to the thousands, but are not intended for arbitrarily large numbers and can only represent positive integers. Arabic numerals are a family of systems, originating in India and passing to medieval Islamic civilization, then to Europe, and now standard in global culture—and having undergone many curious changes with time and geography—can represent arbitrarily large numbers and have been adapted to negative numbers, fractions, and real numbers.
Less well known systems include some that are written and can be read today, such as the Hebrew and Greek method of using the letters of the alphabet, in order, for digits 1–9, tens 10–90, and hundreds 100–900.
A completely different system is that of the quipu, which recorded numbers on knotted strings.
Ethnomathematicians are interested in the ways in which numeration systems grew up, as well as their similarities and differences and the reasons for them. The great variety in ways of representing numbers is especially intriguing.
This means the ways in which number words are formed. [16] [17]
For instance, in English, there are four different systems. The units words (one to nine) and ten are special. The next two are reduced forms of Anglo-Saxon "one left over" and "two left over" (i.e., after counting to ten). Multiples of ten from "twenty" to "ninety" are formed from the units words, one through nine, by a single pattern. Thirteen to nineteen are compounded from tens and units words in one way, and the non-multiples of ten from twenty-one to ninety-nine are compounded from tens and units words in a different way. Larger numbers are also formed on a base of ten and its powers ("hundred" and "thousand"). One may suspect this is based on an ancient tradition of finger counting. Residues of ancient counting by 20s and 12s are the words "score", "dozen", and "gross". (Larger number words like "million" are not part of the original English system; they are scholarly creations based ultimately on Latin.). There were historical inconsistencies in the way the term "billion" was used between American English and British English. These have since been reconciled, and modern English speakers universally refer to 1,000,000,000 as 'one billion'.
The German language and Dutch language counts similarly to English, but the unit is placed before the tens in numbers over 20. For example, "26" is "sechsundzwanzig", literally "six and twenty". This system was formerly common in English, as seen in an artifact from the English nursery rhyme "Sing a Song of Sixpence": Sing a song of sixpence, / a pocket full of rye. / Four and twenty blackbirds, / baked in a pie. It persists in some children's songs such as "One and Twenty Archived 2019-03-23 at the Wayback Machine ."
In the French language as used in France, one sees some differences. Soixante-dix (literally, "sixty-ten") is used for "seventy". The words "quatre-vingt" (literally, "four-twenty", or 80) and "quatre-vingt-dix" (literally, "four-twenty ten" 90) are based on 20 ("vingt") instead of 10. Swiss French and Belgian French do not use these forms, preferring more standard Latinate forms: septante for 70, huitante (formerly octante) for 80 (only in Swiss French) and nonante for 90. [18] [19]
Counting in Welsh combines the vigesimal system (counting in twenties) with some other features.[ citation needed ] The following system is optional for cardinal numbers nowadays, but mandatory for ordinal numbers.
14 | pedwar ar ddeg | four upon ten |
15 | pymtheg | five-ten |
16 | un ar bymtheg | one on five-ten |
20 | ugain | score |
37 | dau ar bymtheg ar hugain | two on five-ten on score |
57 | hanner cant a saith | half hundred and seven |
77 | dau ar bymtheg a thrigain | two on five-ten and three-score |
99 | cant namyn un | hundred less one |
Number words in Chinese are assembled from the words for "one" through "nine" and words for powers of ten.
For example, what is in English written out as "twelve thousand three hundred forty five" is "一万二千三百四十五" (simplified) / "一萬二千三百四十五" (traditional) whose characters translate to "one ten-thousand two thousand three hundred four ten five".
In ancient Mesopotamia, the base for constructing numbers was 60, with 10 used as an intermediate base for numbers below 60.
Many West African languages generally base their number words on a combination of 5 and 20, derived from thinking of a complete hand or a complete set of digits comprising both fingers and toes. In fact, in some languages, the words for 5 and 20 refer to these body parts (e.g., a word for 20 that means "man complete"). The words for numbers below 20 are based on 5 and higher numbers combine the lower numbers with multiples and powers of 20. This description of hundreds of African languages is badly oversimplified. [20]
Many systems of finger counting have been, and still are, used in various parts of the world. Most are not as obvious as holding up a number of fingers. The position of fingers may be most important. [21] One continuing use for finger counting is for people who speak different languages to communicate prices in the marketplace.
In contrast to finger counting, the Yuki people (indigenous Americans from Northern California) keep count by using the four spaces between their fingers rather than the fingers themselves. [22] This is known as an octal (base-8) counting system.
This area of ethnomathematics mainly focuses on addressing Eurocentrism by countering the common belief[ according to whom? ] that most worthwhile[ clarification needed ] mathematics known and used today was developed in the Western world.
The area stresses that "the history of mathematics has been oversimplified",[ according to whom? ] and seeks to explore the emergence of mathematics from various ages and civilizations throughout human history.[ citation needed ]
D'Ambrosio's 1980 review of the evolution of mathematics, his 1985 appeal to include ethnomathematics in the history of mathematics and his 2002 paper about the historiographical approaches to non-Western mathematics are excellent examples. Additionally, Frankenstein and Powell's 1989 attempt to redefine mathematics from a non-eurocentric viewpoint and Anderson's 1990 concepts of world mathematics are strong contributions to this area. Detailed examinations of the history of the mathematical developments of non-European civilizations, such as the mathematics of ancient Japan, [23] Iraq, [24] Egypt, [25] and of Islamic, [26] Hebrew, [27] and Incan [28] civilizations, have also been presented.
The core of any debate about the cultural nature of mathematics will ultimately lead to an examination of the nature of mathematics itself. One of the oldest and most controversial topics in this area is whether mathematics is internal or external, tracing back to the arguments of Plato, an externalist, and Aristotle, an internalist. On the one hand, Internalists such as Bishop, Stigler and Baranes, believe mathematics to be a cultural product. On the other hand, externalists, like Barrow, Chevallard and Penrose, see mathematics as culture-free, and tend to be major critics of ethnomathematics. With disputes about the nature of mathematics, come questions about the nature of ethnomathematics, and the question of whether ethnomathematics is part of mathematics or not. Barton, who has offered the core of research about ethnomathematics and philosophy, asks whether "ethnomathematics is a precursor, parallel body of knowledge or precolonized body of knowledge" to mathematics and if it is even possible for us to identify all types of mathematics based on a Western-epistemological foundation. [29]
The contributions in this area try to illuminate how mathematics has affected the nonacademic areas of society. One of the most controversial and provocative political components of ethnomathematics is its racial implications. Ethnomathematicians purport that the prefix "ethno" should not be taken as relating to race, but rather, the cultural traditions of groups of people. [30] However, in places like South Africa concepts of culture, ethnicity and race are not only intertwined but carry strong, divisive negative connotations. So, although it may be made explicit that ethnomathematics is not a "racist doctrine" it is vulnerable to association with racism.[ citation needed ]
Another major facet of this area addresses the relationship between gender and mathematics. This looks at topics such as discrepancies between male and female math performance in educations and career-orientation, societal causes, women's contributions to mathematics research and development, etc.
Paulus Gerdes' writings about how mathematics can be used in the school systems of Mozambique and South Africa, and D'Ambrosio's 1990 discussion of the role mathematics plays in building a democratic and just society are examples of the impact mathematics can have on developing the identity of a society. In 1990, Bishop also writes about the powerful and dominating influence of Western mathematics. More specific examples of the political impact of mathematics are seen in Knijik's 1993 study of how Brazilian sugar cane farmers could be politically and economically armed with mathematics knowledge, and Osmond's analysis of an employer's perceived value of mathematics (2000).
The focus of this area is to introduce the mathematical ideas of people who have generally been excluded from discussions of formal, academic mathematics. The research of the mathematics of these cultures indicates two, slightly contradictory viewpoints. The first supports the objectivity of mathematics and that it is something discovered not constructed. The studies reveal that all cultures have basic counting, sorting and deciphering methods, and that these have arisen independently in different places around the world. This can be used to argue that these mathematical concepts are being discovered rather than created. However, others emphasize that the usefulness of mathematics is what tends to conceal its cultural constructs. Naturally, it is not surprising that extremely practical concepts such as numbers and counting have arisen in all cultures. The universality of these concepts, however, seems harder to sustain as more and more research reveals practices which are typically mathematical, such as counting, ordering, sorting, measuring and weighing, done in radically different ways (see Section 2.1: Numerals and Naming Systems).
One of the challenges faced by researchers in this area is the fact that they are limited by their own mathematical and cultural frameworks. The discussions of the mathematical ideas of other cultures recast these into a Western framework in order to identify and understand them.[ citation needed ] This raises the questions of how many mathematical ideas evade notice simply because they lack similar Western mathematical counterparts, and of how to draw the line classifying mathematical from non-mathematical ideas.
The majority of research in this area has been about the intuitive mathematical thinking of small-scale, traditional, indigenous cultures, including Aboriginal Australians, [31] the indigenous people of Liberia, [32] Native Americans in North America, [33] Pacific Islanders, [34] Brazilian construction foremen, [35] and various tribes in Africa. [36] [37]
An enormous variety of games that can be analyzed mathematically have been played around the world and through history. The interest of the ethnomathematician usually centers on the ways in which the game represents informal mathematical thought as part of ordinary society, but sometimes has extended to mathematical analyses of games. It does not include the careful analysis of good play—but it may include the social or mathematical aspects of such analysis.
A mathematical game that is well known in European culture is tic-tac-toe (noughts-and-crosses). This is a geometrical game played on a 3-by-3 square; the goal is to form a straight line of three of the same symbol. There are many broadly similar games from all parts of England, to name only one country where they are found.
Another kind of geometrical game involves objects that move or jump over each other within a specific shape (a "board"). There may be captures. The goal may be to eliminate the opponent's pieces, or simply to form a certain configuration, e.g., to arrange the objects according to a rule. One such game is nine men's morris; it has innumerable relatives where the board or setup or moves may vary, sometimes drastically. This kind of game is well suited to play out of doors with stones on the dirt, though now it may use plastic pieces on a paper or wooden board.
A mathematical game found in West Africa is to draw a certain figure by a line that never ends until it closes the figure by reaching the starting point (in mathematical terminology, this is a Eulerian path on a graph). Children use sticks to draw these in the dirt or sand, and of course the game can be played with pen and paper.
The games of checkers, chess, oware (and other mancala games), and Go may also be viewed as subjects for ethnomathematics.
One way mathematics appears in art is through symmetries. Woven designs in cloth or carpets (to name two) commonly have some kind of symmetrical arrangement. A rectangular carpet often has rectangular symmetry in the overall pattern. A woven cloth may exhibit one of the seventeen kinds of plane symmetry groups; see Crowe (2004) for an illustrated mathematical study of African weaving patterns. Several types of patterns discovered by ethnomathematical communities are related to technologies; see Berczi (2002) about illustrated mathematical study of patterns and symmetry in Eurasia. Following the analysis of Indonesian folk weaving patterns [38] and Batak traditional architectural ornaments, [39] the geometry of Indonesian traditional motifs of batik is analyzed by Hokky Situngkir that eventually made a new genre of fractal batik designs as generative art; see Situngkir and Surya (2007) for implementations.
Ethnomathematics and mathematics education addresses first, how cultural values can affect teaching, learning and curriculum, and second, how mathematics education can then affect the political and social dynamics of a culture. One of the stances taken by many educators is that it is crucial to acknowledge the cultural context of mathematics students by teaching culturally based mathematics that students can relate to. Can teaching math through cultural relevance and personal experiences help the learners know more about reality, culture, society and themselves? Robert (2006)
Another approach suggested by mathematics educators is exposing students to the mathematics of a variety of different cultural contexts, often referred to as multicultural math. This can be used both to increase the social awareness of students and offer alternative methods of approaching conventional mathematics operations, like multiplication (Andrew, 2005).
Various mathematics educators have explored ways of bringing together culture and mathematics in the classroom, such as: Barber and Estrin (1995) and Bradley (1984) on Native American education, Gerdes (1988b and 2001) with suggestions for using African art and games, Malloy (1997) about African American students and Flores (1997), who developed instructional strategies for Hispanic students.
Some critics claim that mathematics education unduly emphasizes ethnomathematics in order to promote multiculturalism while spending too little time on core mathematical content, and that this often results in pseudoscience being taught.[ citation needed ] Richard Askey examined [40] Focus on Algebra (an Addison-Wesley textbook criticized in an op-ed by Marianne M. Jennings [41] ) and among other shortcomings found it guilty of repeating debunked claims about Dogon astronomy.
More recently, curriculum changes proposed by the Seattle school district drew criticism to ethnomathematics. Some people judged the proposed changes, which involved a framework for blending math and ethnic studies, for incorporating questions like "How important is it to be right?" and "Who gets to say if an answer is right?" [42]
The decimal numeral system is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as decimal notation.
In linguistics, a numeral in the broadest sense is a word or phrase that describes a numerical quantity. Some theories of grammar use the word "numeral" to refer to cardinal numbers that act as a determiner that specify the quantity of a noun, for example the "two" in "two hats". Some theories of grammar do not include determiners as a part of speech and consider "two" in this example to be an adjective. Some theories consider "numeral" to be a synonym for "number" and assign all numbers to a part of speech called "numerals". Numerals in the broad sense can also be analyzed as a noun, as a pronoun, or for a small number of words as an adverb.
A senary numeral system has six as its base. It has been adopted independently by a small number of cultures. Like the decimal base 10, the base is a semiprime, though it is unique as the product of the only two consecutive numbers that are both prime. As six is a superior highly composite number, many of the arguments made in favor of the duodecimal system also apply to the senary system.
Babylonian cuneiform numerals, also used in Assyria and Chaldea, were written in cuneiform, using a wedge-tipped reed stylus to print a mark on a soft clay tablet which would be exposed in the sun to harden to create a permanent record.
Quipu are recording devices fashioned from strings historically used by a number of cultures in the central Andes Mountains of South America.
Counting is the process of determining the number of elements of a finite set of objects; that is, determining the size of a set. The traditional way of counting consists of continually increasing a counter by a unit for every element of the set, in some order, while marking those elements to avoid visiting the same element more than once, until no unmarked elements are left; if the counter was set to one after the first object, the value after visiting the final object gives the desired number of elements. The related term enumeration refers to uniquely identifying the elements of a finite (combinatorial) set or infinite set by assigning a number to each element.
Ancient Egyptian mathematics is the mathematics that was developed and used in Ancient Egypt c. 3000 to c. 300 BCE, from the Old Kingdom of Egypt until roughly the beginning of Hellenistic Egypt. The ancient Egyptians utilized a numeral system for counting and solving written mathematical problems, often involving multiplication and fractions. Evidence for Egyptian mathematics is limited to a scarce amount of surviving sources written on papyrus. From these texts it is known that ancient Egyptians understood concepts of geometry, such as determining the surface area and volume of three-dimensional shapes useful for architectural engineering, and algebra, such as the false position method and quadratic equations.
The anti-bias curriculum is a curriculum which attempts to challenge prejudices such as racism, sexism, ableism, ageism, weightism, homophobia, classism, colorism, heightism, handism, religious discrimination and other forms of kyriarchy. The approach is favoured by civil rights organisations such as the Anti-Defamation League. Bias refers to violation of equality based on equal opportunities or based on equality of outcomes for different groups, also called substantive equality.
Ethnocomputing is the study of the interactions between computing and culture. It is carried out through theoretical analysis, empirical investigation, and design implementation. It includes research on the impact of computing on society, as well as the reverse: how cultural, historical, personal, and societal origins and surroundings cause and affect the innovation, development, diffusion, maintenance, and appropriation of computational artifacts or ideas. From the ethnocomputing perspective, no computational technology is culturally "neutral," and no cultural practice is a computational void. Instead of considering culture to be a hindrance for software engineering, culture should be seen as a resource for innovation and design.
Claudia Zaslavsky was an American mathematics teacher and ethnomathematician.
Yuki, also known as Ukomno'm, is an extinct language of California, formerly spoken by the Yuki people. The Yuki are the original inhabitants of the Eel River area and the Round Valley Reservation of northern California. Yuki ceased to be used as an everyday language in the early 20th century and its last speaker, Arthur Anderson, died in 1983. Yuki is generally thought to be distantly related to the Wappo language.
The Ishango bone, discovered at the "Fisherman Settlement" of Ishango in the Democratic Republic of the Congo, is a bone tool and possible mathematical device that dates to the Upper Paleolithic era. The curved bone is dark brown in color, about 10 centimeters in length, and features a sharp piece of quartz affixed to one end, perhaps for engraving. Because the bone has been narrowed, scraped, polished, and engraved to a certain extent, it is no longer possible to determine what animal the bone belonged to, although it is assumed to have been a mammal.
Number systems have progressed from the use of fingers and tally marks, perhaps more than 40,000 years ago, to the use of sets of glyphs able to represent any conceivable number efficiently. The earliest known unambiguous notations for numbers emerged in Mesopotamia about 5000 or 6000 years ago.
The Pame languages are a group of languages in Mexico that is spoken by around 12,000 Pame people in the state of San Luis Potosí. It belongs to the Oto-Pamean branch of the Oto-Manguean language family.
Finger-counting, also known as dactylonomy, is the act of counting using one's fingers. There are multiple different systems used across time and between cultures, though many of these have seen a decline in use because of the spread of Arabic numerals.
Ron Eglash is an American who works in cybernetics, anthropology, and design. He is a professor in the School of Information at the University of Michigan with a secondary appointment in the School of Design, and an author widely known for his work in the field of ethnomathematics, which aims to study the diverse relationships between mathematics and culture.
Critical mathematics pedagogy is an approach to mathematics education that includes a practical and philosophical commitment to liberation. Approaches that involve critical mathematics pedagogy give special attention to the social, political, cultural and economic contexts of oppression, as they can be understood through mathematics. They also analyze the role that mathematics plays in producing and maintaining potentially oppressive social, political, cultural or economic structures. Finally, critical mathematics pedagogy demands that critique is connected to action promoting more just and equitable social, political or economic reform.
Geometry From Africa: Mathematical and Educational Explorations is a book in ethnomathematics by Paulus Gerdes. It analyzes the mathematics behind geometric designs and patterns from multiple African cultures, and suggests ways of connecting this analysis with the mathematics curriculum. It was published in 1999 by the Mathematical Association of America, in their Classroom Resource Materials book series.
The mathematics of the Incas was the set of numerical and geometric knowledge and instruments developed and used in the nation of the Incas before the arrival of the Spaniards. It can be mainly characterized by its usefulness in the economic field. The quipus and yupanas are proof of the importance of arithmetic in Inca state administration. This was embodied in a simple but effective arithmetic, for accounting purposes, based on the decimal numeral system; they too had a concept of zero, and mastered addition, subtraction, multiplication, and division. The mathematics of the Incas had an eminently applicative character to tasks of management, statistics, and measurement that was far from the Euclidean outline of mathematics as a deductive corpus, since it was suitable and useful for the needs of a centralized administration.
Paulus Pierre Joseph Gerdes was a Dutch mathematician and university professor, who was one of the pioneers in the field of ethnomathematics research, particularly in Africa.
This section includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(May 2012) |