The examples and perspective in this article may not represent a full view of the subject.(April 2021) |
Futures studies |
---|
Concepts |
Techniques |
Technology assessment and forecasting |
Mathematics | ||
---|---|---|
Portal | ||
The progression of both the nature of mathematics and individual mathematical problems into the future is a widely debated topic; many past predictions about modern mathematics have been misplaced or completely false, so there is reason to believe that many predictions today will follow a similar path. However, the subject still carries an important weight and has been written about by many notable mathematicians. Typically, they are motivated by a desire to set a research agenda to direct efforts to specific problems, or a wish to clarify, update and extrapolate the way that subdisciplines relate to the general discipline of mathematics and its possibilities. Examples of agendas pushing for progress in specific areas in the future, historical and recent, include Felix Klein's Erlangen program, Hilbert's problems, Langlands program, and the Millennium Prize Problems. In the Mathematics Subject Classification section 01Axx History of mathematics and mathematicians, subsection 01A67 is titled Future prospectives.
The accuracy of predictions about mathematics has varied widely and has proceeded very closely to that of technology. [1] As such, it is important to keep in mind that many of the predictions by researchers below may be misguided or turn out to be untrue.
According to Henri Poincaré writing in 1908 (English translation), "The true method of forecasting the future of mathematics lies in the study of its history and its present state". [2] The historical approach can consist of the study of earlier predictions, and comparing them to the present state of the art to see how the predictions have fared, e.g. monitoring the progress of Hilbert's problems. [3] A subject survey of mathematics itself however is now problematic: the sheer expansion of the subject gives rise to issues of mathematical knowledge management.
The development of technology has also significantly impacted the outcomes of many predictions; because of the uncertain nature of the future of technology, this leads to quite a bit of uncertainty in the future of mathematics. [1] Also entailed by this is that successful predictions about future technology may also result in successful mathematical predictions.
Given the support of research by governments and other funding bodies, concerns about the future form part of the rationale of the distribution of funding. [4] Mathematical education must also consider changes that are happening in the mathematical requirements of the workplace; course design will be influenced both by current and by possible future areas of application of mathematics. [5] László Lovász, in Trends in Mathematics: How they could Change Education? [6] describes how the mathematics community and mathematical research activity is growing and states that this will mean changes in the way things are done: larger organisations mean more resources are spent on overheads (coordination and communication); in mathematics this would equate to more time engaged in survey and expository writing.
Steven G. Krantz writes in "The Proof is in the Pudding. A Look at the Changing Nature of Mathematical Proof": [7] "It is becoming increasingly evident that the delineations among “engineer” and “mathematician” and “physicist” are becoming ever more vague. It seems plausible that in 100 years we will no longer speak of mathematicians as such but rather of mathematical scientists. It would not be at all surprising if the notion of “the Department of Mathematics” at the college and university level gives way to “the Division of Mathematical Sciences”."
Experimental mathematics is the use of computers to generate large data sets within which to automate the discovery of patterns which can then form the basis of conjectures and eventually new theories. The paper "Experimental Mathematics: Recent Developments and Future Outlook" [8] describes expected increases in computer capabilities: better hardware in terms of speed and memory capacity; better software in terms of increasing sophistication of algorithms; more advanced visualization facilities; the mixing of numerical and symbolic methods.
Doron Zeilberger considers a time when computers become so powerful that the predominant questions in mathematics change from proving things to determining how much it would cost: "As wider classes of identities, and perhaps even other kinds of classes of theorems, become routinely provable, we might witness many results for which we would know how to find a proof (or refutation), but we would be unable, or unwilling, to pay for finding such proofs, since “almost certainty” can be bought so much cheaper. I can envision an abstract of a paper, c. 2100, that reads : “We show, in a certain precise sense, that the Goldbach conjecture is true with probability larger than 0.99999, and that its complete truth could be determined with a budget of $10B.”" [9] Some people strongly disagree with Zeilberger's prediction; for example, it has been described as provocative and quite wrongheaded, [10] whereas it has also been stated that choosing which theorems are interesting enough to pay for already happens as a result of funding bodies making decisions as to which areas of research to invest in.
In "Rough structure and classification", [11] Timothy Gowers writes about three stages: 1) at the moment computers are just slaves doing boring calculations, 2) soon databases of mathematical concepts and proof methods will lead to an intermediate stage where computers are very helpful with theorem proving but unthreatening, and 3) within a century computers will be better than humans at theorem proving.
Terence Tao and Alessio Figalli (both recipients of Fields Medal) don't agree with Gowers statements, especially those concerning "a threat".
Different subjects of mathematics have very different predictions; for example, while every subject of mathematics is seen to be altered by the computer, [1] some branches are seen to benefit from the use of technology to aid human achievement, while in others computers are predicted to completely replace humans.
In 2001, Peter Cameron in "Combinatorics entering the third millennium" [12] organizes predictions for the future of combinatorics:
throw some light on present trends and future directions. I have divided the causes into four groups: the influence of the computer; the growing sophistication of combinatorics; its strengthening links with the rest of mathematics; and wider changes in society. What is clear, though, is that combinatorics will continue to elude attempts at formal specification.
Béla Bollobás writes: "Hilbert, I think, said that a subject is alive only if it has an abundance of problems. It is exactly this that makes combinatorics very much alive. I have no doubt that combinatorics will be around in a hundred years from now. It will be a completely different subject but it will still flourish simply because it still has many, many problems". [13]
In the year 2000, mathematical logic was discussed in "The Prospects For Mathematical Logic In The Twenty-First Century", [14] including set theory, mathematical logic in computer science, and proof theory.
In 2000, Lloyd N. Trefethen wrote "Predictions for scientific computing 50 years from now", [15] which concluded with the theme that "Human beings will be removed from the loop" and writing in 2008 in The Princeton Companion to Mathematics predicted that by 2050 most numerical programs will be 99% intelligent wrapper and only 1% algorithm, and that the distinction between linear and non-linear problems, and between forward problems (one step) and inverse problems (iteration), and between algebraic and analytic problems, will fade as everything becomes solved by iterative methods inside adaptive intelligent systems that mix and match and combine algorithms as required. [16]
In 1998, Mikhail Gromov in "Possible Trends in Mathematics in the Coming Decades", [17] says that traditional probability theory applies where global structure such as the Gauss Law emerges when there is a lack of structure between individual data points, but that one of today's problems is to develop methods for analyzing structured data where classical probability does not apply. Such methods might include advances in wavelet analysis, higher-dimensional methods and inverse scattering.
A list of grand challenges for control theory is outlined in "Future Directions in Control, Dynamics, and Systems: Overview, Grand Challenges, and New Courses". [18]
Mathematical biology is one of the fastest expanding areas of mathematics at the beginning of the 21st century. "Mathematics Is Biology's Next Microscope, Only Better; Biology Is Mathematics' Next Physics, Only Better" [19] is an essay by Joel E. Cohen.
Mathematical physics is an enormous and diverse subject. Some indications of future research directions are given in "New Trends in Mathematical Physics: Selected Contributions of the XVth International Congress on Mathematical Physics". [20]
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.
David Hilbert was a German mathematician and one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics.
Discrete mathematics is the study of mathematical structures that can be considered "discrete" rather than "continuous". Objects studied in discrete mathematics include integers, graphs, and statements in logic. By contrast, discrete mathematics excludes topics in "continuous mathematics" such as real numbers, calculus or Euclidean geometry. Discrete objects can often be enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets. However, there is no exact definition of the term "discrete mathematics".
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline.
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.
In mathematics, a theorem is a statement that has been proved, or can be proved. The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of provability in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible.
Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the Bulletin of the American Mathematical Society.
Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts and how they form hierarchies of more complex structures and concepts, especially the fundamentally important structures that form the language of mathematics also called metamathematical concepts, with an eye to the philosophical aspects and the unity of mathematics. The search for foundations of mathematics is a central question of the philosophy of mathematics; the abstract nature of mathematical objects presents special philosophical challenges.
Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics.
In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system. A formal theory is an axiomatic system that describes a set of sentences that is closed under logical implication. A formal proof is a complete rendition of a mathematical proof within a formal system.
Combinatorics is a branch of mathematics concerning the study of finite or countable discrete structures.
Sir William Timothy Gowers, is a British mathematician. He is Professeur titulaire of the Combinatorics chair at the Collège de France, and director of research at the University of Cambridge and Fellow of Trinity College, Cambridge. In 1998, he received the Fields Medal for research connecting the fields of functional analysis and combinatorics.
Lists of mathematics topics cover a variety of topics related to mathematics. Some of these lists link to hundreds of articles; some link only to a few. The template to the right includes links to alphabetical lists of all mathematical articles. This article brings together the same content organized in a manner better suited for browsing. Lists cover aspects of basic and advanced mathematics, methodology, mathematical statements, integrals, general concepts, mathematical objects, and reference tables. They also cover equations named after people, societies, mathematicians, journals, and meta-lists.
Martin David Davis was an American mathematician and computer scientist who made significant contributions to the fields of computability theory and mathematical logic. He is best known for his work on Hilbert's tenth problem leading to the MRDP theorem. He also advanced the Post–Turing model and co-developed the Davis–Putnam–Logemann–Loveland (DPLL) algorithm, which is foundational for Boolean satisfiability solvers.
Doron Zeilberger is an Israeli mathematician, known for his work in combinatorics.
A metatheory or meta-theory is a theory the subject matter of which is theory itself, for example as an analysis or description of existing theory. For mathematics and mathematical logic, a metatheory is a mathematical theory about another mathematical theory. Meta-theoretical investigations are part of the philosophy of science. The topic of metascience is an attempt to use scientific knowledge to improve the practice of science itself.
In mathematical physics, Gleason's theorem shows that the rule one uses to calculate probabilities in quantum physics, the Born rule, can be derived from the usual mathematical representation of measurements in quantum physics together with the assumption of non-contextuality. Andrew M. Gleason first proved the theorem in 1957, answering a question posed by George W. Mackey, an accomplishment that was historically significant for the role it played in showing that wide classes of hidden-variable theories are inconsistent with quantum physics. Multiple variations have been proven in the years since. Gleason's theorem is of particular importance for the field of quantum logic and its attempt to find a minimal set of mathematical axioms for quantum theory.