Homotopy theory

Last updated

In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is learned as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and category theory (specifically the study of higher categories).

Contents

Concepts

Spaces and maps

In homotopy theory and algebraic topology, the word "space" denotes a topological space. In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated, or Hausdorff, or a CW complex.

In the same vein as above, a "map" is a continuous function, possibly with some extra constraints.

Often, one works with a pointed space—that is, a space with a "distinguished point", called a basepoint. A pointed map is then a map which preserves basepoints; that is, it sends the basepoint of the domain to that of the codomain. In contrast, a free map is one which needn't preserve basepoints.

Homotopy

Let I denote the unit interval. A family of maps indexed by I, is called a homotopy from to if is a map (e.g., it must be a continuous function). When X, Y are pointed spaces, the are required to preserve the basepoints. A homotopy can be shown to be an equivalence relation. Given a pointed space X and an integer , let be the homotopy classes of based maps from a (pointed) n-sphere to X. As it turns out, are groups; in particular, is called the fundamental group of X.

If one prefers to work with a space instead of a pointed space, there is the notion of a fundamental groupoid (and higher variants): by definition, the fundamental groupoid of a space X is the category where the objects are the points of X and the morphisms are paths.

Cofibration and fibration

A map is called a cofibration if given (1) a map and (2) a homotopy , there exists a homotopy that extends and such that . In some loose sense, it is an analog of the defining diagram of an injective module in abstract algebra. The most basic example is a CW pair ; since many work only with CW complexes, the notion of a cofibration is often implicit.

A fibration in the sense of Serre is the dual notion of a cofibration: that is, a map is a fibration if given (1) a map and (2) a homotopy , there exists a homotopy such that is the given one and . A basic example is a covering map (in fact, a fibration is a generalization of a covering map). If is a principal G-bundle, that is, a space with a free and transitive (topological) group action of a (topological) group, then the projection map is an example of a fibration.

Classifying spaces and homotopy operations

Given a topological group G, the classifying space for principal G-bundles ("the" up to equivalence) is a space such that, for each space X,

{principal G-bundle on X} / ~

where

Brown's representability theorem guarantees the existence of classifying spaces.

Spectrum and generalized cohomology

The idea that a classifying space classifies principal bundles can be pushed further. For example, one might try to classify cohomology classes: given an abelian group A (such as ),

where is the Eilenberg–MacLane space. The above equation leads to the notion of a generalized cohomology theory; i.e., a contravariant functor from the category of spaces to the category of abelian groups that satisfies the axioms generalizing ordinary cohomology theory. As it turns out, such a functor may not be representable by a space but it can always be represented by a sequence of (pointed) spaces with structure maps called a spectrum. In other words, to give a generalized cohomology theory is to give a spectrum.

A basic example of a spectrum is a sphere spectrum:

Key theorems

Obstruction theory and characteristic class

See also: Characteristic class, Postnikov tower, Whitehead torsion

Localization and completion of a space

Specific theories

There are several specific theories

Homotopy hypothesis

One of the basic questions in the foundations of homotopy theory is the nature of a space. The homotopy hypothesis asks whether a space is something fundamentally algebraic.

Abstract homotopy theory

Concepts

Model categories

Simplicial homotopy theory

See also

Related Research Articles

<span class="mw-page-title-main">Algebraic topology</span> Branch of mathematics

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

In mathematics, a characteristic class is a way of associating to each principal bundle of X a cohomology class of X. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic classes are global invariants that measure the deviation of a local product structure from a global product structure. They are one of the unifying geometric concepts in algebraic topology, differential geometry, and algebraic geometry.

Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.

In topology, a branch of mathematics, the smash product of two pointed spaces (i.e. topological spaces with distinguished basepoints) (X,x0) and (Y, y0) is the quotient of the product space X × Y under the identifications (xy0) ∼ (x0y) for all x in X and y in Y. The smash product is itself a pointed space, with basepoint being the equivalence class of (x0, y0). The smash product is usually denoted X ∧ Y or X ⨳ Y. The smash product depends on the choice of basepoints (unless both X and Y are homogeneous).

In mathematics, specifically in homotopy theory, a classifying spaceBG of a topological group G is the quotient of a weakly contractible space EG by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle . As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy.

In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.

In mathematics, in particular homotopy theory, a continuous mapping between topological spaces

In mathematics, the homotopy category is a category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different categories, as discussed below.

In mathematics, topological K-theory is a branch of algebraic topology. It was founded to study vector bundles on topological spaces, by means of ideas now recognised as (general) K-theory that were introduced by Alexander Grothendieck. The early work on topological K-theory is due to Michael Atiyah and Friedrich Hirzebruch.

In mathematics, equivariant cohomology is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space with action of a topological group is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient :

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In mathematics, more specifically algebraic topology, a pair is shorthand for an inclusion of topological spaces . Sometimes is assumed to be a cofibration. A morphism from to is given by two maps and such that .

In mathematics, especially in higher-dimensional algebra and homotopy theory, a double groupoid generalises the notion of groupoid and of category to a higher dimension.

In algebraic topology, the nthsymmetric product of a topological space consists of the unordered n-tuples of its elements. If one fixes a basepoint, there is a canonical way of embedding the lower-dimensional symmetric products into the higher-dimensional ones. That way, one can consider the colimit over the symmetric products, the infinite symmetric product. This construction can easily be extended to give a homotopy functor.

In mathematics, more specifically in homotopy theory, a simplicial presheaf is a presheaf on a site taking values in simplicial sets. Equivalently, a simplicial presheaf is a simplicial object in the category of presheaves on a site. The notion was introduced by A. Joyal in the 1970s. Similarly, a simplicial sheaf on a site is a simplicial object in the category of sheaves on the site.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In mathematics, an Abelian 2-group is a higher dimensional analogue of an Abelian group, in the sense of higher algebra, which were originally introduced by Alexander Grothendieck while studying abstract structures surrounding Abelian varieties and Picard groups. More concretely, they are given by groupoids which have a bifunctor which acts formally like the addition an Abelian group. Namely, the bifunctor has a notion of commutativity, associativity, and an identity structure. Although this seems like a rather lofty and abstract structure, there are several examples of Abelian 2-groups. In fact, some of which provide prototypes for more complex examples of higher algebraic structures, such as Abelian n-groups.

References

Further reading