Homotopy theory

Last updated

In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipline.

Contents

Applications to other fields of mathematics

Besides algebraic topology, the theory has also been used in other areas of mathematics such as:

Concepts

Spaces and maps

In homotopy theory and algebraic topology, the word "space" denotes a topological space. In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated weak Hausdorff or a CW complex.

In the same vein as above, a "map" is a continuous function, possibly with some extra constraints.

Often, one works with a pointed space—that is, a space with a "distinguished point", called a basepoint. A pointed map is then a map which preserves basepoints; that is, it sends the basepoint of the domain to that of the codomain. In contrast, a free map is one which needn't preserve basepoints.

The Cartesian product of two pointed spaces are not naturally pointed. A substitute is the smash product which is characterized by the adjoint relation

,

that is, a smash product is an analog of a tensor product in abstract algebra (see tensor-hom adjunction). Explicitly, is the quotient of by the wedge sum .

Homotopy

Let I denote the unit interval . A map

is called a homotopy from the map to the map , where . Intuitively, we may think of as a path from the map to the map . Indeed, a homotopy can be shown to be an equivalence relation. When X, Y are pointed spaces, the maps are required to preserve the basepoint and the homotopy is called a based homotopy. A based homotopy is the same as a (based) map where is together with a disjoint basepoint. [1]

Given a pointed space X and an integer , let be the homotopy classes of based maps from a (pointed) n-sphere to X. As it turns out,

Every group is the fundamental group of some space. [2]

A map is called a homotopy equivalence if there is another map such that and are both homotopic to the identities. Two spaces are said to be homotopy equivalent if there is a homotopy equivalence between them. A homotopy equivalence class of spaces is then called a homotopy type. There is a weaker notion: a map is said to be a weak homotopy equivalence if is an isomorphism for each and each choice of a base point. A homotopy equivalence is a weak homotopy equivalence but the converse need not be true.

Through the adjunction

,

a homotopy is sometimes viewed as a map .

CW complex

A CW complex is a space that has a filtration whose union is and such that

  1. is a discrete space, called the set of 0-cells (vertices) in .
  2. Each is obtained by attaching several n-disks, n-cells, to via maps ; i.e., the boundary of an n-disk is identified with the image of in .
  3. A subset is open if and only if is open for each .

For example, a sphere has two cells: one 0-cell and one -cell, since can be obtained by collapsing the boundary of the n-disk to a point. In general, every manifold has the homotopy type of a CW complex; [3] in fact, Morse theory implies that a compact manifold has the homotopy type of a finite CW complex.[ citation needed ]

Remarkably, Whitehead's theorem says that for CW complexes, a weak homotopy equivalence and a homotopy equivalence are the same thing.

Another important result is the approximation theorem. First, the homotopy category of spaces is the category where an object is a space but a morphism is the homotopy class of a map. Then

CW approximation    [4] There exist a functor (called the CW approximation functor)

from the homotopy category of spaces to the homotopy category of CW complexes as well as a natural transformation

where , such that each is a weak homotopy equivalence.

Similar statements also hold for pairs and excisive triads. [5] [6]

Explicitly, the above approximation functor can be defined as the composition of the singular chain functor followed by the geometric realization functor; see § Simplicial set.

The above theorem justifies a common habit of working only with CW complexes. For example, given a space , one can just define the homology of to the homology of the CW approximation of (the cell structure of a CW complex determines the natural homology, the cellular homology and that can be taken to be the homology of the complex.)

Cofibration and fibration

A map is called a cofibration if given:

  1. A map , and
  2. A homotopy

such that , there exists a homotopy that extends and such that . An example is a neighborhood deformation retract; that is, contains a mapping cylinder neighborhood of a closed subspace and the inclusion (e.g., a tubular neighborhood of a closed submanifold). [7] In fact, a cofibration can be characterized as a neighborhood deformation retract pair. [8] Another basic example is a CW pair ; many often work only with CW complexes and the notion of a cofibration there is then often implicit.

A fibration in the sense of Hurewicz is the dual notion of a cofibration: that is, a map is a fibration if given (1) a map and (2) a homotopy such that , there exists a homotopy that extends and such that .

While a cofibration is characterized by the existence of a retract, a fibration is characterized by the existence of a section called the path lifting as follows. Let be the pull-back of a map along , called the mapping path space of . [9] Viewing as a homotopy (see § Homotopy), if is a fibration, then gives a homotopy [10]

such that where is given by . [11] This is called the path lifting associated to . Conversely, if there is a path lifting , then is a fibration as a required homotopy is obtained via .

A basic example of a fibration is a covering map as it comes with a unique path lifting. If is a principal G-bundle over a paracompact space, that is, a space with a free and transitive (topological) group action of a (topological) group, then the projection map is a fibration, because a Hurewicz fibration can be checked locally on a paracompact space. [12]

While a cofibration is injective with closed image, [13] a fibration need not be surjective.

There are also based versions of a cofibration and a fibration (namely, the maps are required to be based). [14]

Lifting property

A pair of maps and is said to satisfy the lifting property [15] if for each commutative square diagram

Lifting property diagram.png

there is a map that makes the above diagram still commute. (The notion originates in the theory of model categories.)

Let be a class of maps. Then a map is said to satisfy the right lifting property or the RLP if satisfies the above lifting property for each in . Similarly, a map is said to satisfy the left lifting property or the LLP if it satisfies the lifting property for each in .

For example, a Hurewicz fibration is exactly a map that satisfies the RLP for the inclusions . A Serre fibration is a map satisfying the RLP for the inclusions where is the empty set. A Hurewicz fibration is a Serre fibration and the converse holds for CW complexes. [16]

On the other hand, a cofibration is exactly a map satisfying the LLP for evaluation maps at .

Loop and suspension

On the category of pointed spaces, there are two important functors: the loop functor and the (reduced) suspension functor , which are in the adjoint relation. Precisely, they are defined as [17]

Because of the adjoint relation between a smash product and a mapping space, we have:

These functors are used to construct fiber sequences and cofiber sequences. Namely, if is a map, the fiber sequence generated by is the exact sequence [18]

where is the homotopy fiber of ; i.e., a fiber obtained after replacing by a (based) fibration. The cofibration sequence generated by is where is the homotooy cofiber of constructed like a homotopy fiber (use a quotient instead of a fiber.)

The functors restrict to the category of CW complexes in the following weak sense: a theorem of Milnor says that if has the homotopy type of a CW complex, then so does its loop space . [19]

Classifying spaces and homotopy operations

Given a topological group G, the classifying space for principal G-bundles ("the" up to equivalence) is a space such that, for each space X,

{principal G-bundle on X} / ~

where

Brown's representability theorem guarantees the existence of classifying spaces.

Spectrum and generalized cohomology

The idea that a classifying space classifies principal bundles can be pushed further. For example, one might try to classify cohomology classes: given an abelian group A (such as ),

where is the Eilenberg–MacLane space. The above equation leads to the notion of a generalized cohomology theory; i.e., a contravariant functor from the category of spaces to the category of abelian groups that satisfies the axioms generalizing ordinary cohomology theory. As it turns out, such a functor may not be representable by a space but it can always be represented by a sequence of (pointed) spaces with structure maps called a spectrum. In other words, to give a generalized cohomology theory is to give a spectrum. A K-theory is an example of a generalized cohomology theory.

A basic example of a spectrum is a sphere spectrum:

Ring spectrum and module spectrum

Key theorems

Obstruction theory and characteristic class

See also: Characteristic class, Postnikov tower, Whitehead torsion

Localization and completion of a space

Specific theories

There are several specific theories

Homotopy hypothesis

One of the basic questions in the foundations of homotopy theory is the nature of a space. The homotopy hypothesis asks whether a space is something fundamentally algebraic.

If one prefers to work with a space instead of a pointed space, there is the notion of a fundamental groupoid (and higher variants): by definition, the fundamental groupoid of a space X is the category where the objects are the points of X and the morphisms are paths.

Abstract homotopy theory

Abstract homotopy theory is an axiomatic approach to homotopy theory. Such axiomatization is useful for non-traditional applications of homotopy theory. One approach to axiomatization is by Quillen's model categories. A model category is a category with a choice of three classes of maps called weak equivalences, cofibrations and fibrations, subject to the axioms that are reminiscent of facts in algebraic topology. For example, the category of (reasonable) topological spaces has a structure of a model category where a weak equivalence is a weak homotopy equivalence, a cofibration a certain retract and a fibration a Serre fibration. [20] Another example is the category of non-negatively graded chain complexes over a fixed base ring. [21]

Simplicial set

A simplicial set is an abstract generalization of a simplicial complex and can play a role of a "space" in some sense. Despite the name, it is not a set but is a sequence of sets together with the certain maps (face and degeneracy) between those sets.

For example, given a space , for each integer , let be the set of all maps from the n-simplex to . Then the sequence of sets is a simplicial set. [22] Each simplicial set has a naturally associated chain complex and the homology of that chain complex is the homology of . The singular homology of is precisely the homology of the simplicial set . Also, the geometric realization of a simplicial set is a CW complex and the composition is precisely the CW approximation functor.

Another important example is a category or more precisely the nerve of a category, which is a simplicial set. In fact, a simplicial set is the nerve of some category if and only if it satisfies the Segal conditions (a theorem of Grothendieck). Each category is completely determined by its nerve. In this way, a category can be viewed as a special kind of a simplicial set, and this observation is used to generalize a category. Namely, an -category or an -groupoid is defined as particular kinds of simplicial sets.

Since simplicial sets are sort of abstract spaces (if not topological spaces), it is possible to develop the homotopy theory on them, which is called the simplicial homotopy theory. [22]

See also

Related Research Articles

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

<span class="mw-page-title-main">Homotopy</span> Continuous deformation between two continuous functions

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

In mathematics, certain functors may be derived to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics.

In mathematics, specifically in homotopy theory, a classifying spaceBG of a topological group G is the quotient of a weakly contractible space EG by a proper free action of G. It has the property that any G principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle . As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy.

In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.

In mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber.

In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.

In mathematics, in particular homotopy theory, a continuous mapping between topological spaces

In mathematics, the homotopy category is a category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different categories, as discussed below.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes. The concept was introduced by Daniel G. Quillen.

In category theory, a discipline within mathematics, the nerveN(C) of a small category C is a simplicial set constructed from the objects and morphisms of C. The geometric realization of this simplicial set is a topological space, called the classifying space of the categoryC. These closely related objects can provide information about some familiar and useful categories using algebraic topology, most often homotopy theory.

In algebraic geometry and algebraic topology, branches of mathematics, A1homotopy theory or motivic homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky. The underlying idea is that it should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an algebraic variety, with the affine line A1, which is. The theory has seen spectacular applications such as Voevodsky's construction of the derived category of mixed motives and the proof of the Milnor and Bloch-Kato conjectures.

In algebraic topology, the Dold-Thom theorem states that the homotopy groups of the infinite symmetric product of a connected CW complex are the same as its reduced homology groups. The most common version of its proof consists of showing that the composition of the homotopy group functors with the infinite symmetric product defines a reduced homology theory. One of the main tools used in doing so are quasifibrations. The theorem has been generalised in various ways, for example by the Almgren isomorphism theorem.

In algebraic topology, the nthsymmetric product of a topological space consists of the unordered n-tuples of its elements. If one fixes a basepoint, there is a canonical way of embedding the lower-dimensional symmetric products into the higher-dimensional ones. That way, one can consider the colimit over the symmetric products, the infinite symmetric product. This construction can easily be extended to give a homotopy functor.

In mathematics, a weak equivalence is a notion from homotopy theory that in some sense identifies objects that have the same "shape". This notion is formalized in the axiomatic definition of a model category.

In mathematics, more specifically in homotopy theory, a simplicial presheaf is a presheaf on a site taking values in simplicial sets. Equivalently, a simplicial presheaf is a simplicial object in the category of presheaves on a site. The notion was introduced by A. Joyal in the 1970s. Similarly, a simplicial sheaf on a site is a simplicial object in the category of sheaves on the site.

In mathematics, especially in algebraic topology, the homotopy limit and colimitpg 52 are variants of the notions of limit and colimit extended to the homotopy category . The main idea is this: if we have a diagram

In category theory, a branch of mathematics, a (left) Bousfield localization of a model category replaces the model structure with another model structure with the same cofibrations but with more weak equivalences.

This is a glossary of properties and concepts in algebraic topology in mathematics.

References

  1. May , Ch. 8. § 3.
  2. May , Ch 4. § 5.
  3. Milnor 1959 , Corollary 1. NB: "second countable" implies "separable".
  4. May, Ch. 10., § 5
  5. May, Ch. 10., § 6
  6. May, Ch. 10., § 7
  7. Hatcher , Example 0.15.
  8. May , Ch 6. § 4.
  9. Some authors use . The definition here is from May , Ch. 8., § 5.
  10. May , Ch. 7., § 2.
  11. in the reference should be .
  12. May , Ch. 7., § 4.
  13. May , Ch. 6., Problem (1)
  14. May , Ch 8. § 3. and § 5.
  15. May & Ponto , Definition 14.1.5.
  16. "A Serre fibration between CW-complexes is a Hurewicz fibration in nLab".
  17. May , Ch. 8, § 2.
  18. May , Ch. 8, § 6.
  19. Milnor 1959 , Theorem 3.
  20. Dwyer & Spalinski , Example 3.5.
  21. Dwyer & Spalinski , Example 3.7.
  22. 1 2 May , Ch. 16, § 4.


Further reading