Representable functor

Last updated

In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures (i.e. sets and functions) allowing one to utilize, as much as possible, knowledge about the category of sets in other settings.

Contents

From another point of view, representable functors for a category C are the functors given with C. Their theory is a vast generalisation of upper sets in posets, and Yoneda's representability theorem generalizes Cayley's theorem in group theory.

Definition

Let C be a locally small category and let Set be the category of sets. For each object A of C let Hom(A,) be the hom functor that maps object X to the set Hom(A,X).

A functor F : CSet is said to be representable if it is naturally isomorphic to Hom(A,) for some object A of C. A representation of F is a pair (A, Φ) where

Φ : Hom(A,) F

is a natural isomorphism.

A contravariant functor G from C to Set is the same thing as a functor G : CopSet and is commonly called a presheaf. A presheaf is representable when it is naturally isomorphic to the contravariant hom-functor Hom(,A) for some object A of C.

Universal elements

According to Yoneda's lemma, natural transformations from Hom(A,) to F are in one-to-one correspondence with the elements of F(A). Given a natural transformation Φ : Hom(A,) → F the corresponding element uF(A) is given by

Conversely, given any element uF(A) we may define a natural transformation Φ : Hom(A,) → F via

where f is an element of Hom(A,X). In order to get a representation of F we want to know when the natural transformation induced by u is an isomorphism. This leads to the following definition:

A universal element of a functor F : CSet is a pair (A,u) consisting of an object A of C and an element uF(A) such that for every pair (X,v) consisting of an object X of C and an element vF(X) there exists a unique morphism f : AX such that (Ff)(u) = v.

A universal element may be viewed as a universal morphism from the one-point set {•} to the functor F or as an initial object in the category of elements of F.

The natural transformation induced by an element uF(A) is an isomorphism if and only if (A,u) is a universal element of F. We therefore conclude that representations of F are in one-to-one correspondence with universal elements of F. For this reason, it is common to refer to universal elements (A,u) as representations.

Examples

Analogy: Representable functionals

Consider a linear functional on a complex Hilbert space H, i.e. a linear function . The Riesz representation theorem states that if F is continuous, then there exists a unique element which represents F in the sense that F is equal to the inner product functional , that is for .

For example, the continuous linear functionals on the square-integrable function space are all representable in the form for a unique function . The theory of distributions considers more general continuous functionals on the space of test functions . Such a distribution functional is not necessarily representable by a function, but it may be considered intuitively as a generalized function. For instance, the Dirac delta function is the distribution defined by for each test function , and may be thought of as "represented" by an infinitely tall and thin bump function near .

Thus, a function may be determined not by its values, but by its effect on other functions via the inner product. Analogously, an object A in a category may be characterized not by its internal features, but by its functor of points, i.e. its relation to other objects via morphisms. Just as non-representable functionals are described by distributions, non-representable functors may be described by more complicated structures such as stacks.

Properties

Uniqueness

Representations of functors are unique up to a unique isomorphism. That is, if (A11) and (A22) represent the same functor, then there exists a unique isomorphism φ : A1A2 such that

as natural isomorphisms from Hom(A2,) to Hom(A1,). This fact follows easily from Yoneda's lemma.

Stated in terms of universal elements: if (A1,u1) and (A2,u2) represent the same functor, then there exists a unique isomorphism φ : A1A2 such that

Preservation of limits

Representable functors are naturally isomorphic to Hom functors and therefore share their properties. In particular, (covariant) representable functors preserve all limits. It follows that any functor which fails to preserve some limit is not representable.

Contravariant representable functors take colimits to limits.

Left adjoint

Any functor K : CSet with a left adjoint F : SetC is represented by (FX, ηX(•)) where X = {•} is a singleton set and η is the unit of the adjunction.

Conversely, if K is represented by a pair (A, u) and all small copowers of A exist in C then K has a left adjoint F which sends each set I to the Ith copower of A.

Therefore, if C is a category with all small copowers, a functor K : CSet is representable if and only if it has a left adjoint.

Relation to universal morphisms and adjoints

The categorical notions of universal morphisms and adjoint functors can both be expressed using representable functors.

Let G : DC be a functor and let X be an object of C. Then (A,φ) is a universal morphism from X to G if and only if (A,φ) is a representation of the functor HomC(X,G) from D to Set. It follows that G has a left-adjoint F if and only if HomC(X,G) is representable for all X in C. The natural isomorphism ΦX : HomD(FX,) → HomC(X,G) yields the adjointness; that is

is a bijection for all X and Y.

The dual statements are also true. Let F : CD be a functor and let Y be an object of D. Then (A,φ) is a universal morphism from F to Y if and only if (A,φ) is a representation of the functor HomD(F,Y) from C to Set. It follows that F has a right-adjoint G if and only if HomD(F,Y) is representable for all Y in D. [2]

See also

Related Research Articles

In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.

<span class="mw-page-title-main">Universal property</span> Characterizing property of mathematical constructions

In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them. For example, the definitions of the integers from the natural numbers, of the rational numbers from the integers, of the real numbers from the rational numbers, and of polynomial rings from the field of their coefficients can all be done in terms of universal properties. In particular, the concept of universal property allows a simple proof that all constructions of real numbers are equivalent: it suffices to prove that they satisfy the same universal property.

In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory. It allows the embedding of any locally small category into a category of functors defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda.

In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits.

In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.

In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In category theory, a branch of mathematics, an initial object of a category C is an object I in C such that for every object X in C, there exists precisely one morphism IX.

In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum and classical computation.

In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices.

In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

In category theory, a branch of mathematics, a functor category is a category where the objects are the functors and the morphisms are natural transformations between the functors. Functor categories are of interest for two main reasons:

In mathematics, in the area of category theory, a forgetful functor 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure. Because many structures in mathematics consist of a set with an additional added structure, a forgetful functor that maps to the underlying set is the most common case.

Fibred categories are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space X to another topological space Y is associated the pullback functor taking bundles on Y to bundles on X. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories with "descent". Fibrations also play an important role in categorical semantics of type theory, and in particular that of dependent type theories.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, specifically in category theory, hom-sets give rise to important functors to the category of sets. These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics.

In category theory, a branch of mathematics, a presheaf on a category is a functor . If is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space.

In algebraic geometry, a prestackF over a category C equipped with some Grothendieck topology is a category together with a functor p: FC satisfying a certain lifting condition and such that locally isomorphic objects are isomorphic. A stack is a prestack with effective descents, meaning local objects may be patched together to become a global object.

In category theory, a branch of mathematics, the density theorem states that every presheaf of sets is a colimit of representable presheaves in a canonical way.

References

  1. Hungerford, Thomas. Algebra. Springer-Verlag. p. 470. ISBN   3-540-90518-9.
  2. Nourani, Cyrus. A Functorial Model Theory: Newer Applications to Algebraic Topology, Descriptive Sets, and Computing Categories Topos. CRC Press. p. 28. ISBN   1482231506.