In mathematics, the Yoneda lemma is a fundamental result in category theory. [1] It is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a miniature category with just one object and only isomorphisms). It allows the embedding of any locally small category into a category of functors (contravariant set-valued functors) defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda.
The Yoneda lemma suggests that instead of studying the locally small category , one should study the category of all functors of into (the category of sets with functions as morphisms). is a category we think we understand well, and a functor of into can be seen as a "representation" of in terms of known structures. The original category is contained in this functor category, but new objects appear in the functor category, which were absent and "hidden" in . Treating these new objects just like the old ones often unifies and simplifies the theory.
This approach is akin to (and in fact generalizes) the common method of studying a ring by investigating the modules over that ring. The ring takes the place of the category , and the category of modules over the ring is a category of functors defined on .
Yoneda's lemma concerns functors from a fixed category to a category of sets, . If is a locally small category (i.e. the hom-sets are actual sets and not proper classes), then each object of gives rise to a functor to called a hom-functor. This functor is denoted:
The (covariant) hom-functor sends to the set of morphisms and sends a morphism (where ) to the morphism (composition with on the left) that sends a morphism in to the morphism in . That is,
Yoneda's lemma says that:
Lemma (Yoneda) — Let be a functor from a locally small category to . Then for each object of , the natural transformations from to are in one-to-one correspondence with the elements of . That is,
Moreover, this isomorphism is natural in and when both sides are regarded as functors from to .
Here the notation denotes the category of functors from to .
Given a natural transformation from to , the corresponding element of is ; [a] and given an element of , the corresponding natural transformation is given by which assigns to a morphism a value of .
There is a contravariant version of Yoneda's lemma, [2] which concerns contravariant functors from to . This version involves the contravariant hom-functor
which sends to the hom-set . Given an arbitrary contravariant functor from to , Yoneda's lemma asserts that
The bijections provided in the (covariant) Yoneda lemma (for each and ) are the components of a natural isomorphism between two certain functors from to . [3] : 61 One of the two functors is the evaluation functor
that sends a pair of a morphism in and a natural transformation to the map
This is enough to determine the other functor since we know what the natural isomorphism is. Under the second functor
the image of a pair is the map
that sends a natural transformation to the natural transformation , whose components are
The use of for the covariant hom-functor and for the contravariant hom-functor is not completely standard. Many texts and articles either use the opposite convention or completely unrelated symbols for these two functors. However, most modern algebraic geometry texts starting with Alexander Grothendieck's foundational EGA use the convention in this article. [b]
The mnemonic "falling into something" can be helpful in remembering that is the covariant hom-functor. When the letter is falling (i.e. a subscript), assigns to an object the morphisms from into.
Since is a natural transformation, we have the following commutative diagram:
This diagram shows that the natural transformation is completely determined by since for each morphism one has
Moreover, any element defines a natural transformation in this way. The proof in the contravariant case is completely analogous. [1]
An important special case of Yoneda's lemma is when the functor from to is another hom-functor . In this case, the covariant version of Yoneda's lemma states that
That is, natural transformations between hom-functors are in one-to-one correspondence with morphisms (in the reverse direction) between the associated objects. Given a morphism the associated natural transformation is denoted .
Mapping each object in to its associated hom-functor and each morphism to the corresponding natural transformation determines a contravariant functor from to , the functor category of all (covariant) functors from to . One can interpret as a covariant functor:
The meaning of Yoneda's lemma in this setting is that the functor is fully faithful, and therefore gives an embedding of in the category of functors to . The collection of all functors is a subcategory of . Therefore, Yoneda embedding implies that the category is isomorphic to the category .
The contravariant version of Yoneda's lemma states that
Therefore, gives rise to a covariant functor from to the category of contravariant functors to :
Yoneda's lemma then states that any locally small category can be embedded in the category of contravariant functors from to via . This is called the Yoneda embedding.
The Yoneda embedding is sometimes denoted by よ, the hiragana Yo. [4]
The Yoneda embedding essentially states that for every (locally small) category, objects in that category can be represented by presheaves, in a full and faithful manner. That is,
for a presheaf P. Many common categories are, in fact, categories of pre-sheaves, and on closer inspection, prove to be categories of sheaves, and as such examples are commonly topological in nature, they can be seen to be topoi in general. The Yoneda lemma provides a point of leverage by which the topological structure of a category can be studied and understood.
Given two categories and with two functors , natural transformations between them can be written as the following end. [5]
For any functors and the following formulas are all formulations of the Yoneda lemma. [6]
A preadditive category is a category where the morphism sets form abelian groups and the composition of morphisms is bilinear; examples are categories of abelian groups or modules. In a preadditive category, there is both a "multiplication" and an "addition" of morphisms, which is why preadditive categories are viewed as generalizations of rings. Rings are preadditive categories with one object.
The Yoneda lemma remains true for preadditive categories if we choose as our extension the category of additive contravariant functors from the original category into the category of abelian groups; these are functors which are compatible with the addition of morphisms and should be thought of as forming a module category over the original category. The Yoneda lemma then yields the natural procedure to enlarge a preadditive category so that the enlarged version remains preadditive — in fact, the enlarged version is an abelian category, a much more powerful condition. In the case of a ring , the extended category is the category of all right modules over , and the statement of the Yoneda lemma reduces to the well-known isomorphism
As stated above, the Yoneda lemma may be considered as a vast generalization of Cayley's theorem from group theory. To see this, let be a category with a single object such that every morphism is an isomorphism (i.e. a groupoid with one object). Then forms a group under the operation of composition, and any group can be realized as a category in this way.
In this context, a covariant functor consists of a set and a group homomorphism , where is the group of permutations of ; in other words, is a G-set. A natural transformation between such functors is the same thing as an equivariant map between -sets: a set function with the property that for all in and in . (On the left side of this equation, the denotes the action of on , and on the right side the action on .)
Now the covariant hom-functor corresponds to the action of on itself by left-multiplication (the contravariant version corresponds to right-multiplication). The Yoneda lemma with states that
that is, the equivariant maps from this -set to itself are in bijection with . But it is easy to see that (1) these maps form a group under composition, which is a subgroup of , and (2) the function which gives the bijection is a group homomorphism. (Going in the reverse direction, it associates to every in the equivariant map of right-multiplication by .) Thus is isomorphic to a subgroup of , which is the statement of Cayley's theorem.
Yoshiki Kinoshita stated in 1996 that the term "Yoneda lemma" was coined by Saunders Mac Lane following an interview he had with Yoneda in the Gare du Nord station. [7] [8]
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in almost all areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality.
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.
In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:
In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits.
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.
In mathematics, a direct limit is a way to construct a object from many objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category. The way they are put together is specified by a system of homomorphisms between those smaller objects. The direct limit of the objects , where ranges over some directed set , is denoted by . This notation suppresses the system of homomorphisms; however, the limit depends on the system of homomorphisms.
In category theory, a branch of mathematics, a functor category is a category where the objects are the functors and the morphisms are natural transformations between the functors. Functor categories are of interest for two main reasons:
Mitchell's embedding theorem, also known as the Freyd–Mitchell theorem or the full embedding theorem, is a result about abelian categories; it essentially states that these categories, while rather abstractly defined, are in fact concrete categories of modules. This allows one to use element-wise diagram chasing proofs in these categories. The theorem is named after Barry Mitchell and Peter Freyd.
In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures allowing one to utilize, as much as possible, knowledge about the category of sets in other settings.
In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.
Fibred categories are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space X to another topological space Y is associated the pullback functor taking bundles on Y to bundles on X. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories with "descent". Fibrations also play an important role in categorical semantics of type theory, and in particular that of dependent type theories.
This is a glossary of properties and concepts in category theory in mathematics.
In mathematics, specifically in category theory, hom-sets give rise to important functors to the category of sets. These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics.
In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: X → Y, we can define a new sheaf f∗F on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of f∗F is given by the global sections of F. This assignment gives rise to a functor f∗ from the category of sheaves on X to the category of sheaves on Y, which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme.
In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two coherence maps—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors
In category theory, a branch of mathematics, profunctors are a generalization of relations and also of bimodules.
In category theory, a branch of mathematics, a presheaf on a category is a functor . If is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space.
Isbell conjugacy is a fundamental construction of enriched category theory formally introduced by William Lawvere in 1986. That is a duality between covariant and contravariant representable presheaves associated with an objects of categories under the Yoneda embedding. In addition, Lawvere is states as follows; "Then the conjugacies are the first step toward expressing the duality between space and quantity fundamental to mathematics".
In mathematics, the quotient of an abelian category by a Serre subcategory is the abelian category which, intuitively, is obtained from by ignoring all objects from . There is a canonical exact functor whose kernel is , and is in a certain sense the most general abelian category with this property.