Enriched category

Last updated

In category theory, a branch of mathematics, an enriched category generalizes the idea of a category by replacing hom-sets with objects from a general monoidal category. It is motivated by the observation that, in many practical applications, the hom-set often has additional structure that should be respected, e.g., that of being a vector space of morphisms, or a topological space of morphisms. In an enriched category, the set of morphisms (the hom-set) associated with every pair of objects is replaced by an object in some fixed monoidal category of "hom-objects". In order to emulate the (associative) composition of morphisms in an ordinary category, the hom-category must have a means of composing hom-objects in an associative manner: that is, there must be a binary operation on objects giving us at least the structure of a monoidal category, though in some contexts the operation may also need to be commutative and perhaps also to have a right adjoint (i.e., making the category symmetric monoidal or even symmetric closed monoidal, respectively).[ citation needed ]

Contents

Enriched category theory thus encompasses within the same framework a wide variety of structures including

In the case where the hom-object category happens to be the category of sets with the usual cartesian product, the definitions of enriched category, enriched functor, etc... reduce to the original definitions from ordinary category theory.

An enriched category with hom-objects from monoidal category M is said to be an enriched category over M or an enriched category in M, or simply an M-category. Due to Mac Lane's preference for the letter V in referring to the monoidal category, enriched categories are also sometimes referred to generally as V-categories.

Definition

Let (M, ⊗, I, α, λ, ρ) be a monoidal category. Then an enriched categoryC (alternatively, in situations where the choice of monoidal category needs to be explicit, a category enriched overM, or M-category), consists of

The first diagram expresses the associativity of composition:

Math-enriched category associativity.svg

That is, the associativity requirement is now taken over by the associator of the monoidal category M.

For the case that M is the category of sets and (⊗, I, α, λ, ρ) is the monoidal structure (×, {•}, ...) given by the cartesian product, the terminal single-point set, and the canonical isomorphisms they induce, then each C(a, b) is a set whose elements may be thought of as "individual morphisms" of C, while °, now a function, defines how consecutive morphisms compose. In this case, each path leading to C(a, d) in the first diagram corresponds to one of the two ways of composing three consecutive individual morphisms abcd, i.e. elements from C(a, b), C(b, c) and C(c, d). Commutativity of the diagram is then merely the statement that both orders of composition give the same result, exactly as required for ordinary categories.

What is new here is that the above expresses the requirement for associativity without any explicit reference to individual morphisms in the enriched category C again, these diagrams are for morphisms in monoidal category M, and not in C thus making the concept of associativity of composition meaningful in the general case where the hom-objects C(a, b) are abstract, and C itself need not even have any notion of individual morphism.

The notion that an ordinary category must have identity morphisms is replaced by the second and third diagrams, which express identity in terms of left and right unitors:

Math-enriched category identity1.svg

and

Math-enriched category identity2.svg

Returning to the case where M is the category of sets with cartesian product, the morphisms ida: IC(a, a) become functions from the one-point set I and must then, for any given object a, identify a particular element of each set C(a, a), something we can then think of as the "identity morphism for a in C". Commutativity of the latter two diagrams is then the statement that compositions (as defined by the functions °) involving these distinguished individual "identity morphisms in C" behave exactly as per the identity rules for ordinary categories.

Note that there are several distinct notions of "identity" being referenced here:

Examples of enriched categories

bc and abac (transitivity)
TRUEaa (reflexivity)
which are none other than the axioms for ≤ being a preorder. And since all diagrams in 2 commute, this is the sole content of the enriched category axioms for categories enriched over 2.
d(b,c) + d(a,b) ≥ d(a,c) (triangle inequality)
0 ≥ d(a,a)

Relationship with monoidal functors

If there is a monoidal functor from a monoidal category M to a monoidal category N, then any category enriched over M can be reinterpreted as a category enriched over N. Every monoidal category M has a monoidal functor M(I, ) to the category of sets, so any enriched category has an underlying ordinary category. In many examples (such as those above) this functor is faithful, so a category enriched over M can be described as an ordinary category with certain additional structure or properties.

Enriched functors

An enriched functor is the appropriate generalization of the notion of a functor to enriched categories. Enriched functors are then maps between enriched categories which respect the enriched structure.

If C and D are M-categories (that is, categories enriched over monoidal category M), an M-enriched functor T: CD is a map which assigns to each object of C an object of D and for each pair of objects a and b in C provides a morphism in MTab : C(a, b) → D(T(a), T(b)) between the hom-objects of C and D (which are objects in M), satisfying enriched versions of the axioms of a functor, viz preservation of identity and composition.

Because the hom-objects need not be sets in an enriched category, one cannot speak of a particular morphism. There is no longer any notion of an identity morphism, nor of a particular composition of two morphisms. Instead, morphisms from the unit to a hom-object should be thought of as selecting an identity, and morphisms from the monoidal product should be thought of as composition. The usual functorial axioms are replaced with corresponding commutative diagrams involving these morphisms.

In detail, one has that the diagram

Enrichedidentity.png

commutes, which amounts to the equation

where I is the unit object of M. This is analogous to the rule F(ida) = idF(a) for ordinary functors. Additionally, one demands that the diagram

Enrichedmult.png

commute, which is analogous to the rule F(fg)=F(f)F(g) for ordinary functors.

See also

Related Research Articles

<span class="mw-page-title-main">Category theory</span> General theory of mathematical structures

Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in almost all areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality.

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties.

<span class="mw-page-title-main">Category (mathematics)</span> Mathematical object that generalizes the standard notions of sets and functions

In mathematics, a category is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions.

In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In mathematics, specifically in category theory, a preadditive category is another name for an Ab-category, i.e., a category that is enriched over the category of abelian groups, Ab. That is, an Ab-categoryC is a category such that every hom-set Hom(A,B) in C has the structure of an abelian group, and composition of morphisms is bilinear, in the sense that composition of morphisms distributes over the group operation. In formulas:

In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts.

In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum and classical computation.

In mathematics, a monoidal category is a category equipped with a bifunctor

The following outline is provided as an overview of and guide to category theory, the area of study in mathematics that examines in an abstract way the properties of particular mathematical concepts, by formalising them as collections of objects and arrows, where these collections satisfy certain basic conditions. Many significant areas of mathematics can be formalised as categories, and the use of category theory allows many intricate and subtle mathematical results in these fields to be stated, and proved, in a much simpler way than without the use of categories.

In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

In mathematics, especially in category theory, a closed monoidal category is a category that is both a monoidal category and a closed category in such a way that the structures are compatible.

This is a glossary of properties and concepts in category theory in mathematics.

In category theory, a strict 2-category is a category with "morphisms between morphisms", that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category enriched over Cat.

In mathematics, specifically in category theory, hom-sets give rise to important functors to the category of sets. These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics.

In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category such that the tensor product is symmetric. One of the prototypical examples of a symmetric monoidal category is the category of vector spaces over some fixed field k, using the ordinary tensor product of vector spaces.

<span class="mw-page-title-main">Monoid (category theory)</span>

In category theory, a branch of mathematics, a monoid (or monoid object, or internal monoid, or algebra) (M, μ, η) in a monoidal category (C, ⊗, I) is an object M together with two morphisms

In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two coherence maps—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors

In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for objects in arbitrary monoidal categories. It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property.

<span class="mw-page-title-main">Category of relations</span>

In mathematics, the category Rel has the class of sets as objects and binary relations as morphisms.

In mathematics, specifically in the field known as category theory, a monoidal category where the monoidal ("tensor") product is the categorical product is called a cartesian monoidal category. Any category with finite products can be thought of as a cartesian monoidal category. In any cartesian monoidal category, the terminal object is the monoidal unit. Dually, a monoidal finite coproduct category with the monoidal structure given by the coproduct and unit the initial object is called a cocartesian monoidal category, and any finite coproduct category can be thought of as a cocartesian monoidal category.

References