# Coequalizer

Last updated

In category theory, a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary category. It is the categorical construction dual to the equalizer.

## Definition

A coequalizer is a colimit of the diagram consisting of two objects X and Y and two parallel morphisms f, g : XY.

More explicitly, a coequalizer can be defined as an object Q together with a morphism q : YQ such that qf = qg. Moreover, the pair (Q, q) must be universal in the sense that given any other such pair (Q, q) there exists a unique morphism u : QQ such that uq = q. This information can be captured by the following commutative diagram:

As with all universal constructions, a coequalizer, if it exists, is unique up to a unique isomorphism (this is why, by abuse of language, one sometimes speaks of "the" coequalizer of two parallel arrows).

It can be shown that a coequalizer q is an epimorphism in any category.

## Examples

• In the category of sets, the coequalizer of two functions f, g : XY is the quotient of Y by the smallest equivalence relation ${\displaystyle \sim }$ such that for every ${\displaystyle x\in X}$, we have ${\displaystyle f(x)\sim g(x)}$. [1] In particular, if R is an equivalence relation on a set Y, and r1, r2 are the natural projections (RY×Y) → Y then the coequalizer of r1 and r2 is the quotient set Y/R. (See also: quotient by an equivalence relation.)
• The coequalizer in the category of groups is very similar. Here if f, g : XY are group homomorphisms, their coequalizer is the quotient of Y by the normal closure of the set
${\displaystyle S=\{f(x)g(x)^{-1}\mid x\in X\}}$
• For abelian groups the coequalizer is particularly simple. It is just the factor group Y / im(fg). (This is the cokernel of the morphism fg; see the next section).
• In the category of topological spaces, the circle object ${\displaystyle S^{1}}$ can be viewed as the coequalizer of the two inclusion maps from the standard 0-simplex to the standard 1-simplex.
• Coequalizers can be large: There are exactly two functors from the category 1 having one object and one identity arrow, to the category 2 with two objects and one non-identity arrow going between them. The coequalizer of these two functors is the monoid of natural numbers under addition, considered as a one-object category. In particular, this shows that while every coequalizing arrow is epic, it is not necessarily surjective.

## Properties

• Every coequalizer is an epimorphism.
• In a topos, every epimorphism is the coequalizer of its kernel pair.

## Special cases

In categories with zero morphisms, one can define a cokernel of a morphism f as the coequalizer of f and the parallel zero morphism.

In preadditive categories it makes sense to add and subtract morphisms (the hom-sets actually form abelian groups). In such categories, one can define the coequalizer of two morphisms f and g as the cokernel of their difference:

coeq(f, g) = coker(gf).

A stronger notion is that of an absolute coequalizer, this is a coequalizer that is preserved under all functors. Formally, an absolute coequalizer of a pair of parallel arrows f, g : XY in a category C is a coequalizer as defined above, but with the added property that given any functor F: CD, F(Q) together with F(q) is the coequalizer of F(f) and F(g) in the category D. Split coequalizers are examples of absolute coequalizers.

## Notes

1. Barr, Michael; Wells, Charles (1998). Category theory for computing science (PDF). p. 278. Archived from the original (PDF) on March 4, 2016. Retrieved July 25, 2013.

## Related Research Articles

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits.

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Abelian categories are named after Niels Henrik Abel.

In mathematics, a category is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions.

In mathematics, specifically category theory, adjunction is a relationship that two functors may have. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In category theory, an epimorphism is a morphism f : XY that is right-cancellative in the sense that, for all objects Z and all morphisms g1, g2: YZ,

In mathematics, specifically in category theory, a pre-abelian category is an additive category that has all kernels and cokernels.

In mathematics, the cokernel of a linear mapping of vector spaces f : XY is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f.

In category theory, an abstract branch of mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of category theory is known as categorical topology.

In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category: indeed, every small abelian category can be embedded in Ab.

In category theory, a branch of mathematics, a pushout is the colimit of a diagram consisting of two morphisms f : ZX and g : ZY with a common domain. The pushout consists of an object P along with two morphisms XP and YP that complete a commutative square with the two given morphisms f and g. In fact, the defining universal property of the pushout essentially says that the pushout is the "most general" way to complete this commutative square. Common notations for the pushout are and .

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called 'weak equivalences', 'fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstract from the category of topological spaces or of chain complexes. The concept was introduced by Daniel G. Quillen (1967).

In mathematics, a quotient category is a category obtained from another one by identifying sets of morphisms. Formally, it is a quotient object in the category of categories, analogous to a quotient group or quotient space, but in the categorical setting.

In category theory, a regular category is a category with finite limits and coequalizers of a pair of morphisms called kernel pairs, satisfying certain exactness conditions. In that way, regular categories recapture many properties of abelian categories, like the existence of images, without requiring additivity. At the same time, regular categories provide a foundation for the study of a fragment of first-order logic, known as regular logic.

In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings and whose morphisms are ring homomorphisms. Like many categories in mathematics, the category of rings is large, meaning that the class of all rings is proper.

In representation theory, the stable module category is a category in which projectives are "factored out."

In algebraic geometry, a prestackF over a category C equipped with some Grothendieck topology is a category together with a functor p: FC satisfying a certain lifting condition and such that locally isomorphic objects are isomorphic. A stack is a prestack with effective descents, meaning local objects may be patched together to become a global object.