Concrete category

Last updated

In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets (or sometimes to another category). This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the category of topological spaces and the category of groups, and trivially also the category of sets itself. On the other hand, the homotopy category of topological spaces is not concretizable, i.e. it does not admit a faithful functor to the category of sets.

Contents

A concrete category, when defined without reference to the notion of a category, consists of a class of objects, each equipped with an underlying set; and for any two objects A and B a set of functions, called homomorphisms, from the underlying set of A to the underlying set of B. Furthermore, for every object A, the identity function on the underlying set of A must be a homomorphism from A to A, and the composition of a homomorphism from A to B followed by a homomorphism from B to C must be a homomorphism from A to C. [1]

Definition

A concrete category is a pair (C,U) such that

The functor U is to be thought of as a forgetful functor, which assigns to every object of C its "underlying set", and to every morphism in C its "underlying function".

It is customary to call the morphisms in a concrete category homomorphisms (e.g., group homomorphisms, ring homomorphisms, etc.) Because of the faithfulness of the functor U, the homomorphisms of a concrete category may be formally identified with their underlying functions (i.e., their images under U); the homomorphisms then regain the usual interpretation as "structure-preserving" functions.

A category C is concretizable if there exists a concrete category (C,U); i.e., if there exists a faithful functor U: CSet. All small categories are concretizable: define U so that its object part maps each object b of C to the set of all morphisms of C whose codomain is b (i.e. all morphisms of the form f: ab for any object a of C), and its morphism part maps each morphism g: bc of C to the function U(g): U(b) → U(c) which maps each member f: ab of U(b) to the composition gf: ac, a member of U(c). (Item 6 under Further examples expresses the same U in less elementary language via presheaves.) The Counter-examples section exhibits two large categories that are not concretizable.

Remarks

Contrary to intuition, concreteness is not a property that a category may or may not satisfy, but rather a structure with which a category may or may not be equipped. In particular, a category C may admit several faithful functors into Set. Hence there may be several concrete categories (C, U) all corresponding to the same category C.

In practice, however, the choice of faithful functor is often clear and in this case we simply speak of the "concrete category C". For example, "the concrete category Set" means the pair (Set, I) where I denotes the identity functor SetSet.

The requirement that U be faithful means that it maps different morphisms between the same objects to different functions. However, U may map different objects to the same set and, if this occurs, it will also map different morphisms to the same function.

For example, if S and T are two different topologies on the same set X, then (X, S) and (X, T) are distinct objects in the category Top of topological spaces and continuous maps, but mapped to the same set X by the forgetful functor TopSet. Moreover, the identity morphism (X, S) → (X, S) and the identity morphism (X, T) → (X, T) are considered distinct morphisms in Top, but they have the same underlying function, namely the identity function on X.

Similarly, any set with four elements can be given two non-isomorphic group structures: one isomorphic to , and the other isomorphic to .

Further examples

  1. Any group G may be regarded as an "abstract" category with one arbitrary object, , and one morphism for each element of the group. This would not be counted as concrete according to the intuitive notion described at the top of this article. But every faithful G-set (equivalently, every representation of G as a group of permutations) determines a faithful functor GSet. Since every group acts faithfully on itself, G can be made into a concrete category in at least one way.
  2. Similarly, any poset P may be regarded as an abstract category with a unique arrow xy whenever xy. This can be made concrete by defining a functor D : PSet which maps each object x to and each arrow xy to the inclusion map .
  3. The category Rel whose objects are sets and whose morphisms are relations can be made concrete by taking U to map each set X to its power set and each relation to the function defined by . Noting that power sets are complete lattices under inclusion, those functions between them arising from some relation R in this way are exactly the supremum-preserving maps. Hence Rel is equivalent to a full subcategory of the category Sup of complete lattices and their sup-preserving maps. Conversely, starting from this equivalence we can recover U as the composite RelSupSet of the forgetful functor for Sup with this embedding of Rel in Sup.
  4. The category Setop can be embedded into Rel by representing each set as itself and each function f: XY as the relation from Y to X formed as the set of pairs (f(x), x) for all xX; hence Setop is concretizable. The forgetful functor which arises in this way is the contravariant powerset functor SetopSet.
  5. It follows from the previous example that the opposite of any concretizable category C is again concretizable, since if U is a faithful functor CSet then Cop may be equipped with the composite CopSetopSet.
  6. If C is any small category, then there exists a faithful functor P : SetCopSet which maps a presheaf X to the coproduct . By composing this with the Yoneda embedding Y:CSetCop one obtains a faithful functor CSet.
  7. For technical reasons, the category Ban1 of Banach spaces and linear contractions is often equipped not with the "obvious" forgetful functor but the functor U1 : Ban1Set which maps a Banach space to its (closed) unit ball.
  8. The category Cat whose objects are small categories and whose morphisms are functors can be made concrete by sending each category C to the set containing its objects and morphisms. Functors can be simply viewed as functions acting on the objects and morphisms.

Counter-examples

The category hTop , where the objects are topological spaces and the morphisms are homotopy classes of continuous functions, is an example of a category that is not concretizable. While the objects are sets (with additional structure), the morphisms are not actual functions between them, but rather classes of functions. The fact that there does not exist any faithful functor from hTop to Set was first proven by Peter Freyd. In the same article, Freyd cites an earlier result that the category of "small categories and natural equivalence-classes of functors" also fails to be concretizable.

Implicit structure of concrete categories

Given a concrete category (C, U) and a cardinal number N, let UN be the functor CSet determined by UN(c) = (U(c))N. Then a subfunctor of UN is called an N-ary predicate and a natural transformation UNU an N-ary operation.

The class of all N-ary predicates and N-ary operations of a concrete category (C,U), with N ranging over the class of all cardinal numbers, forms a large signature. The category of models for this signature then contains a full subcategory which is equivalent to C.

Relative concreteness

In some parts of category theory, most notably topos theory, it is common to replace the category Set with a different category X, often called a base category. For this reason, it makes sense to call a pair (C, U) where C is a category and U a faithful functor CX a concrete category overX. For example, it may be useful to think of the models of a theory with N sorts as forming a concrete category over SetN.

In this context, a concrete category over Set is sometimes called a construct.

Notes

  1. Mac Lane, Saunders; Birkhoff, Garrett (1999), Algebra (3rd ed.), AMS Chelsea, ISBN   978-0-8218-1646-2

Related Research Articles

In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

<span class="mw-page-title-main">Isomorphism</span> In mathematics, invertible homomorphism

In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσοςisos "equal", and μορφήmorphe "form" or "shape".

<span class="mw-page-title-main">Universal property</span> Characterizing property of mathematical constructions

In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them. For example, the definitions of the integers from the natural numbers, of the rational numbers from the integers, of the real numbers from the rational numbers, and of polynomial rings from the field of their coefficients can all be done in terms of universal properties. In particular, the concept of universal property allows a simple proof that all constructions of real numbers are equivalent: it suffices to prove that they satisfy the same universal property.

In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.

In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In category theory, an epimorphism is a morphism f : XY that is right-cancellative in the sense that, for all objects Z and all morphisms g1, g2: YZ,

<span class="mw-page-title-main">Exact sequence</span> Sequence of homomorphisms such that each kernel equals the preceding image

An exact sequence is a sequence of morphisms between objects such that the image of one morphism equals the kernel of the next.

In mathematics, a direct limit is a way to construct a object from many objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category. The way they are put together is specified by a system of homomorphisms between those smaller objects. The direct limit of the objects , where ranges over some directed set , is denoted by . This notation suppresses the system of homomorphisms; however, the limit depends on the system of homomorphisms.

In mathematics, specifically category theory, a subcategory of a category C is a category S whose objects are objects in C and whose morphisms are morphisms in C with the same identities and composition of morphisms. Intuitively, a subcategory of C is a category obtained from C by "removing" some of its objects and arrows.

In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices.

In mathematics, the category Ab has the abelian groups as objects and group homomorphisms as morphisms. This is the prototype of an abelian category: indeed, every small abelian category can be embedded in Ab.

In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures allowing one to utilize, as much as possible, knowledge about the category of sets in other settings.

In mathematics, in the area of category theory, a forgetful functor 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure. Because many structures in mathematics consist of a set with an additional added structure, a forgetful functor that maps to the underlying set is the most common case.

In category theory, a faithful functor is a functor that is injective on hom-sets, and a full functor is surjective on hom-sets. A functor that has both properties is called a fully faithful functor.

In mathematics, the homotopy category is a category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different categories, as discussed below.

<i>F</i>-algebra

In mathematics, specifically in category theory, F-algebras generalize the notion of algebraic structure. Rewriting the algebraic laws in terms of morphisms eliminates all references to quantified elements from the axioms, and these algebraic laws may then be glued together in terms of a single functor F, the signature.

This is a glossary of properties and concepts in category theory in mathematics.

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings and whose morphisms are ring homomorphisms. Like many categories in mathematics, the category of rings is large, meaning that the class of all rings is proper.

In mathematics, a topos is a category that behaves like the category of sheaves of sets on a topological space. Topoi behave much like the category of sets and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic.

References