Equivalence of categories

Last updated

In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

Contents

If a category is equivalent to the opposite (or dual) of another category then one speaks of a duality of categories, and says that the two categories are dually equivalent.

An equivalence of categories consists of a functor between the involved categories, which is required to have an "inverse" functor. However, in contrast to the situation common for isomorphisms in an algebraic setting, the composite of the functor and its "inverse" is not necessarily the identity mapping. Instead it is sufficient that each object be naturally isomorphic to its image under this composition. Thus one may describe the functors as being "inverse up to isomorphism". There is indeed a concept of isomorphism of categories where a strict form of inverse functor is required, but this is of much less practical use than the equivalence concept.

Definition

Formally, given two categories C and D, an equivalence of categories consists of a functor F : CD, a functor G : DC, and two natural isomorphisms ε: FGID and η : ICGF. Here FG: DD and GF: CC denote the respective compositions of F and G, and IC: CC and ID: DD denote the identity functors on C and D, assigning each object and morphism to itself. If F and G are contravariant functors one speaks of a duality of categories instead.

One often does not specify all the above data. For instance, we say that the categories C and D are equivalent (respectively dually equivalent) if there exists an equivalence (respectively duality) between them. Furthermore, we say that F "is" an equivalence of categories if an inverse functor G and natural isomorphisms as above exist. Note however that knowledge of F is usually not enough to reconstruct G and the natural isomorphisms: there may be many choices (see example below).

Alternative characterizations

A functor F : CD yields an equivalence of categories if and only if it is simultaneously:

This is a quite useful and commonly applied criterion, because one does not have to explicitly construct the "inverse" G and the natural isomorphisms between FG, GF and the identity functors. On the other hand, though the above properties guarantee the existence of a categorical equivalence (given a sufficiently strong version of the axiom of choice in the underlying set theory), the missing data is not completely specified, and often there are many choices. It is a good idea to specify the missing constructions explicitly whenever possible. Due to this circumstance, a functor with these properties is sometimes called a weak equivalence of categories. (Unfortunately this conflicts with terminology from homotopy type theory.)

There is also a close relation to the concept of adjoint functors , where we say that is the left adjoint of , or likewise, G is the right adjoint of F. Then C and D are equivalent (as defined above in that there are natural isomorphisms from FG to ID and IC to GF) if and only if and both F and G are full and faithful.

When adjoint functors are not both full and faithful, then we may view their adjointness relation as expressing a "weaker form of equivalence" of categories. Assuming that the natural transformations for the adjunctions are given, all of these formulations allow for an explicit construction of the necessary data, and no choice principles are needed. The key property that one has to prove here is that the counit of an adjunction is an isomorphism if and only if the right adjoint is a full and faithful functor.

Examples

Properties

As a rule of thumb, an equivalence of categories preserves all "categorical" concepts and properties. If F : CD is an equivalence, then the following statements are all true:

Dualities "turn all concepts around": they turn initial objects into terminal objects, monomorphisms into epimorphisms, kernels into cokernels, limits into colimits etc.

If F : CD is an equivalence of categories, and G1 and G2 are two inverses of F, then G1 and G2 are naturally isomorphic.

If F : CD is an equivalence of categories, and if C is a preadditive category (or additive category, or abelian category), then D may be turned into a preadditive category (or additive category, or abelian category) in such a way that F becomes an additive functor. On the other hand, any equivalence between additive categories is necessarily additive. (Note that the latter statement is not true for equivalences between preadditive categories.)

An auto-equivalence of a category C is an equivalence F : CC. The auto-equivalences of C form a group under composition if we consider two auto-equivalences that are naturally isomorphic to be identical. This group captures the essential "symmetries" of C. (One caveat: if C is not a small category, then the auto-equivalences of C may form a proper class rather than a set.)

See also

Related Research Articles

<span class="mw-page-title-main">Category theory</span> General theory of mathematical structures

Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in almost all areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality.

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

<span class="mw-page-title-main">Isomorphism</span> In mathematics, invertible homomorphism

In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσοςisos "equal", and μορφήmorphe "form" or "shape".

In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits.

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties.

In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In category theory, an epimorphism is a morphism f : XY that is right-cancellative in the sense that, for all objects Z and all morphisms g1, g2: YZ,

In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts.

In mathematics, a monoidal category is a category equipped with a bifunctor

In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices.

In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of category theory is known as categorical topology.

In category theory, two categories C and D are isomorphic if there exist functors F : CD and G : DC that are mutually inverse to each other, i.e. FG = 1D and GF = 1C. This means that both the objects and the morphisms of C and D stand in a one-to-one correspondence to each other. Two isomorphic categories share all properties that are defined solely in terms of category theory; for all practical purposes, they are identical and differ only in the notation of their objects and morphisms.

In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces. Calculus of fractions is another name for working in a localized category.

In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures allowing one to utilize, as much as possible, knowledge about the category of sets in other settings.

In mathematics, the derived categoryD(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences.

In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, a quotient category is a category obtained from another category by identifying sets of morphisms. Formally, it is a quotient object in the category of categories, analogous to a quotient group or quotient space, but in the categorical setting.

In mathematics, the category of rings, denoted by Ring, is the category whose objects are rings and whose morphisms are ring homomorphisms. Like many categories in mathematics, the category of rings is large, meaning that the class of all rings is proper.

In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in analysis and topology, continuous functions, and so on.

References

  1. Mac Lane (1998), Theorem IV.4.1
  2. Lutz Schröder (2001). "Categories: a free tour". In Jürgen Koslowski and Austin Melton (ed.). Categorical Perspectives. Springer Science & Business Media. p. 10. ISBN   978-0-8176-4186-3.