In mathematics, pointless topology, also called point-free topology (or pointfree topology) and locale theory, is an approach to topology that avoids mentioning points, and in which the lattices of open sets are the primitive notions. [1] In this approach it becomes possible to construct topologically interesting spaces from purely algebraic data. [2]
The first approaches to topology were geometrical, where one started from Euclidean space and patched things together. But Marshall Stone's work on Stone duality in the 1930s showed that topology can be viewed from an algebraic point of view (lattice-theoretic). Apart from Stone, Henry Wallman was the first person to exploit this idea. Others continued this path till Charles Ehresmann and his student Jean Bénabou (and simultaneously others), made the next fundamental step in the late fifties. Their insights arose from the study of "topological" and "differentiable" categories. [2]
Ehresmann's approach involved using a category whose objects were complete lattices which satisfied a distributive law and whose morphisms were maps which preserved finite meets and arbitrary joins. He called such lattices "local lattices"; today they are called "frames" to avoid ambiguity with other notions in lattice theory. [3]
The theory of frames and locales in the contemporary sense was developed through the following decades (John Isbell, Peter Johnstone, Harold Simmons, Bernhard Banaschewski, Aleš Pultr, Till Plewe, Japie Vermeulen, Steve Vickers) into a lively branch of topology, with application in various fields, in particular also in theoretical computer science. For more on the history of locale theory see Johnstone's overview. [4]
Traditionally, a topological space consists of a set of points together with a topology, a system of subsets called open sets that with the operations of union (as join) and intersection (as meet) forms a lattice with certain properties. Specifically, the union of any family of open sets is again an open set, and the intersection of finitely many open sets is again open. In pointless topology we take these properties of the lattice as fundamental, without requiring that the lattice elements be sets of points of some underlying space and that the lattice operation be intersection and union. Rather, point-free topology is based on the concept of a "realistic spot" instead of a point without extent. These "spots" can be joined (symbol ), akin to a union, and we also have a meet operation for spots (symbol ), akin to an intersection. Using these two operations, the spots form a complete lattice. If a spot meets a join of others it has to meet some of the constituents, which, roughly speaking, leads to the distributive law
where the and are spots and the index family can be arbitrarily large. This distributive law is also satisfied by the lattice of open sets of a topological space.
If and are topological spaces with lattices of open sets denoted by and , respectively, and is a continuous map, then, since the pre-image of an open set under a continuous map is open, we obtain a map of lattices in the opposite direction: . Such "opposite-direction" lattice maps thus serve as the proper generalization of continuous maps in the point-free setting.
The basic concept is that of a frame, a complete lattice satisfying the general distributive law above. Frame homomorphisms are maps between frames that respect all joins (in particular, the least element of the lattice) and finite meets (in particular, the greatest element of the lattice). Frames, together with frame homomorphisms, form a category.
The opposite category of the category of frames is known as the category of locales. A locale is thus nothing but a frame; if we consider it as a frame, we will write it as . A locale morphism from the locale to the locale is given by a frame homomorphism .
Every topological space gives rise to a frame of open sets and thus to a locale. A locale is called spatial if it isomorphic (in the category of locales) to a locale arising from a topological space in this manner.
We have seen that we have a functor from the category of topological spaces and continuous maps to the category of locales. If we restrict this functor to the full subcategory of sober spaces, we obtain a full embedding of the category of sober spaces and continuous maps into the category of locales. In this sense, locales are generalizations of sober spaces.
It is possible to translate most concepts of point-set topology into the context of locales, and prove analogous theorems. Some important facts of classical topology depending on choice principles become choice-free (that is, constructive, which is, in particular, appealing for computer science). Thus for instance, arbitrary products of compact locales are compact constructively (this is Tychonoff's theorem in point-set topology), or completions of uniform locales are constructive. This can be useful if one works in a topos that does not have the axiom of choice. [5] Other advantages include the much better behaviour of paracompactness, with arbitrary products of paracompact locales being paracompact, which is not true for paracompact spaces, or the fact that subgroups of localic groups are always closed.
Another point where topology and locale theory diverge strongly is the concepts of subspaces versus sublocales, and density: given any collection of dense sublocales of a locale , their intersection is also dense in . [6] This leads to Isbell's density theorem: every locale has a smallest dense sublocale. These results have no equivalent in the realm of topological spaces.
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .
In commutative algebra, the prime spectrum of a commutative ring is the set of all prime ideals of , and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .
In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.
In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For comparison, in a general lattice, only pairs of elements need to have a supremum and an infimum. Every non-empty finite lattice is complete, but infinite lattices may be incomplete.
In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets. This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the category of topological spaces and the category of groups, and trivially also the category of sets itself. On the other hand, the homotopy category of topological spaces is not concretizable, i.e. it does not admit a faithful functor to the category of sets.
In mathematics, de Rham cohomology is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties.
In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.
In mathematics, there is an ample supply of categorical dualities between certain categories of topological spaces and categories of partially ordered sets. Today, these dualities are usually collected under the label Stone duality, since they form a natural generalization of Stone's representation theorem for Boolean algebras. These concepts are named in honor of Marshall Stone. Stone-type dualities also provide the foundation for pointless topology and are exploited in theoretical computer science for the study of formal semantics.
In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary of a manifold. Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher.
In mathematics, a spectral space is a topological space that is homeomorphic to the spectrum of a commutative ring. It is sometimes also called a coherent space because of the connection to coherent topoi.
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. In other cases the dual of the dual – the double dual or bidual – is not necessarily identical to the original. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.
In mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the objects of three different categories; the category CHey, the category Loc of locales, and its opposite, the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras.
In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomology theory
,
In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper.
In mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by Dennis Sullivan and Daniel Quillen. This simplification of homotopy theory makes certain calculations much easier.
In mathematics, especially in the area of mathematical analysis known as dynamical systems theory, a linear flow on the torus is a flow on the n-dimensional torus which is represented by the following differential equations with respect to the standard angular coordinates
This is a glossary of properties and concepts in algebraic topology in mathematics.
In mathematics, a selection principle is a rule asserting the possibility of obtaining mathematically significant objects by selecting elements from given sequences of sets. The theory of selection principles studies these principles and their relations to other mathematical properties. Selection principles mainly describe covering properties, measure- and category-theoretic properties, and local properties in topological spaces, especially function spaces. Often, the characterization of a mathematical property using a selection principle is a nontrivial task leading to new insights on the characterized property.
This is a glossary for the terminology in a mathematical field of functional analysis.
A general introduction to pointless topology is
This is, in its own words, to be read as a trailer for Johnstone's monograph and which can be used for basic reference:
There is a recent monograph
For relations with logic:
For a more concise account see the respective chapters in: