Subgroup

Last updated

In group theory, a branch of mathematics, given a group G under a binary operation  ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is often denoted HG, read as "H is a subgroup of G".

Contents

The trivial subgroup of any group is the subgroup {e} consisting of just the identity element. [1]

A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, HG). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e}). [2] [3]

If H is a subgroup of G, then G is sometimes called an overgroup of H.

The same definitions apply more generally when G is an arbitrary semigroup, but this article will only deal with subgroups of groups.

Subgroup tests

Suppose that G is a group, and H is a subset of G. For now, assume that the group operation of G is written multiplicatively, denoted by juxtaposition.

If the group operation is instead denoted by addition, then closed under products should be replaced by closed under addition, which is the condition that for every a and b in H, the sum a+b is in H, and closed under inverses should be edited to say that for every a in H, the inverse −a is in H.

Basic properties of subgroups

G is the group
Z
/
8
Z
{\displaystyle \mathbb {Z} /8\mathbb {Z} }
, the integers mod 8 under addition. The subgroup H contains only 0 and 4, and is isomorphic to
Z
/
2
Z
{\displaystyle \mathbb {Z} /2\mathbb {Z} }
. There are four left cosets of H: H itself, 1+H, 2+H, and 3+H (written using additive notation since this is an additive group). Together they partition the entire group G into equal-size, non-overlapping sets. The index [G : H] is 4. Left cosets of Z 2 in Z 8.svg
G is the group , the integers mod 8 under addition. The subgroup H contains only 0 and 4, and is isomorphic to . There are four left cosets of H: H itself, 1+H, 2+H, and 3+H (written using additive notation since this is an additive group). Together they partition the entire group G into equal-size, non-overlapping sets. The index [G : H] is 4.

Cosets and Lagrange's theorem

Given a subgroup H and some a in G, we define the left coset aH = {ah : h in H}. Because a is invertible, the map φ : HaH given by φ(h) = ah is a bijection. Furthermore, every element of G is contained in precisely one left coset of H; the left cosets are the equivalence classes corresponding to the equivalence relation a1 ~ a2 if and only if a1−1a2 is in H. The number of left cosets of H is called the index of H in G and is denoted by [G : H].

Lagrange's theorem states that for a finite group G and a subgroup H,

where |G| and |H| denote the orders of G and H, respectively. In particular, the order of every subgroup of G (and the order of every element of G) must be a divisor of |G|. [7] [8]

Right cosets are defined analogously: Ha = {ha : h in H}. They are also the equivalence classes for a suitable equivalence relation and their number is equal to [G : H].

If aH = Ha for every a in G, then H is said to be a normal subgroup. Every subgroup of index 2 is normal: the left cosets, and also the right cosets, are simply the subgroup and its complement. More generally, if p is the lowest prime dividing the order of a finite group G, then any subgroup of index p (if such exists) is normal.

Example: Subgroups of Z8

Let G be the cyclic group Z8 whose elements are

and whose group operation is addition modulo 8. Its Cayley table is

+04261537
004261537
440625173
226403751
662047315
115372640
551736204
337514062
773150426

This group has two nontrivial subgroups: J = {0, 4} and H = {0, 4, 2, 6} , where J is also a subgroup of H. The Cayley table for H is the top-left quadrant of the Cayley table for G; The Cayley table for J is the top-left quadrant of the Cayley table for H. The group G is cyclic, and so are its subgroups. In general, subgroups of cyclic groups are also cyclic. [9]

Example: Subgroups of S4

Let S4 be the symmetric group on 4 elements. Below are all the subgroups of S4, listed according to the number of elements, in decreasing order.

24 elements

The whole group S4 is a subgroup of S4, of order 24. Its Cayley table is

The symmetric group S4 showing all permutations of 4 elements Symmetric group 4; Cayley table; numbers.svg
The symmetric group S4 showing all permutations of 4 elements
Symmetric group S4; lattice of subgroups Hasse diagram; all 30 subgroups.svg
All 30 subgroups
Symmetric group S4; lattice of subgroups Hasse diagram; 11 different cycle graphs.svg
Simplified

12 elements

The alternating group A4 showing only the even permutations

Subgroups: Alternating group 4; Cayley table; numbers.svg
The alternating group A4 showing only the even permutations

Subgroups:
Klein four-group; Cayley table; subgroup of S4 (elements 0,7,16,23).svg
Cyclic group 3; Cayley table; subgroup of S4 (elements 0,3,4).svg Cyclic group 3; Cayley table; subgroup of S4 (elements 0,11,19).svg Cyclic group 3; Cayley table; subgroup of S4 (elements 0,15,20).svg Cyclic group 3; Cayley table; subgroup of S4 (elements 0,8,12).svg

8 elements

Dihedral group of order 8

Subgroups: Dihedral group of order 8; Cayley table (element orders 1,2,2,2,2,4,4,2); subgroup of S4.svg
Dihedral group of order 8

Subgroups:
Klein four-group; Cayley table; subgroup of S4 (elements 0,1,6,7).svg Klein four-group; Cayley table; subgroup of S4 (elements 0,7,16,23).svg Cyclic group 4; Cayley table (element orders 1,2,4,4); subgroup of S4.svg
 
Dihedral group of order 8

Subgroups: Dihedral group of order 8; Cayley table (element orders 1,2,2,4,2,2,4,2); subgroup of S4.svg
Dihedral group of order 8

Subgroups:
Klein four-group; Cayley table; subgroup of S4 (elements 0,5,14,16).svg Klein four-group; Cayley table; subgroup of S4 (elements 0,7,16,23).svg Cyclic group 4; Cayley table (element orders 1,4,2,4); subgroup of S4.svg
 
Dihedral group of order 8

Subgroups: Dihedral group of order 8; Cayley table (element orders 1,2,2,4,4,2,2,2); subgroup of S4.svg
Dihedral group of order 8

Subgroups:
Klein four-group; Cayley table; subgroup of S4 (elements 0,2,21,23).svg Klein four-group; Cayley table; subgroup of S4 (elements 0,7,16,23).svg Cyclic group 4; Cayley table (element orders 1,4,4,2); subgroup of S4.svg

6 elements

Symmetric group S3

Subgroup: Symmetric group 3; Cayley table; subgroup of S4 (elements 0,1,2,3,4,5).svg
Symmetric group S3

Subgroup: Cyclic group 3; Cayley table; subgroup of S4 (elements 0,3,4).svg
Symmetric group S3

Subgroup: Symmetric group 3; Cayley table; subgroup of S4 (elements 0,5,6,11,19,21).svg
Symmetric group S3

Subgroup: Cyclic group 3; Cayley table; subgroup of S4 (elements 0,11,19).svg
Symmetric group S3

Subgroup: Symmetric group 3; Cayley table; subgroup of S4 (elements 0,1,14,15,20,21).svg
Symmetric group S3

Subgroup: Cyclic group 3; Cayley table; subgroup of S4 (elements 0,15,20).svg
Symmetric group S3

Subgroup: Symmetric group 3; Cayley table; subgroup of S4 (elements 0,2,6,8,12,14).svg
Symmetric group S3

Subgroup: Cyclic group 3; Cayley table; subgroup of S4 (elements 0,8,12).svg

4 elements

Klein four-group Klein four-group; Cayley table; subgroup of S4 (elements 0,1,6,7).svg
Klein four-group
Klein four-group Klein four-group; Cayley table; subgroup of S4 (elements 0,5,14,16).svg
Klein four-group
Klein four-group Klein four-group; Cayley table; subgroup of S4 (elements 0,2,21,23).svg
Klein four-group
Klein four-group Klein four-group; Cayley table; subgroup of S4 (elements 0,7,16,23).svg
Klein four-group
Cyclic group Z4 Cyclic group 4; Cayley table (element orders 1,2,4,4); subgroup of S4.svg
Cyclic group Z4
Cyclic group Z4 Cyclic group 4; Cayley table (element orders 1,4,2,4); subgroup of S4.svg
Cyclic group Z4
Cyclic group Z4 Cyclic group 4; Cayley table (element orders 1,4,4,2); subgroup of S4.svg
Cyclic group Z4

3 elements

Cyclic group Z3 Cyclic group 3; Cayley table; subgroup of S4 (elements 0,3,4).svg
Cyclic group Z3
Cyclic group Z3 Cyclic group 3; Cayley table; subgroup of S4 (elements 0,11,19).svg
Cyclic group Z3
Cyclic group Z3 Cyclic group 3; Cayley table; subgroup of S4 (elements 0,15,20).svg
Cyclic group Z3
Cyclic group Z3 Cyclic group 3; Cayley table; subgroup of S4 (elements 0,8,12).svg
Cyclic group Z3

2 elements

Each element s of order 2 in S4 generates a subgroup {1,s} of order 2. There are 9 such elements: the transpositions (2-cycles) and the three elements (12)(34), (13)(24), (14)(23).

1 element

The trivial subgroup is the unique subgroup of order 1 in S4.

Other examples

See also

Notes

  1. Gallian 2013, p. 61.
  2. Hungerford 1974, p. 32.
  3. Artin 2011, p. 43.
  4. 1 2 Kurzweil & Stellmacher 1998, p. 4.
  5. Jacobson 2009, p. 41.
  6. Ash 2002.
  7. See a didactic proof in this video.
  8. Dummit & Foote 2004, p. 90.
  9. Gallian 2013, p. 81.

Related Research Articles

<span class="mw-page-title-main">Equivalence relation</span> Mathematical concept for comparing objects

In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.

<span class="mw-page-title-main">Quotient group</span> Group obtained by aggregating similar elements of a larger group

A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure. For example, the cyclic group of addition modulo n can be obtained from the group of integers under addition by identifying elements that differ by a multiple of and defining a group structure that operates on each such class as a single entity. It is part of the mathematical field known as group theory.

<span class="mw-page-title-main">Group action</span> Transformations induced by a mathematical group

In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group acts on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron.

<span class="mw-page-title-main">Group (mathematics)</span> Set with associative invertible operation

In mathematics, a group is a set and an operation that combines any two elements of the set to produce a third element of the set, in such a way that the operation is associative, an identity element exists and every element has an inverse. These three axioms hold for number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics.

<span class="mw-page-title-main">Semigroup</span> Algebraic structure consisting of a set with an associative binary operation

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.

<span class="mw-page-title-main">Lagrange's theorem (group theory)</span> The order of a subgroup of a finite group G divides the order of G

In the mathematical field of group theory, Lagrange's theorem is a theorem that states that for any finite group G, the order of every subgroup of G divides the order of G. The theorem is named after Joseph-Louis Lagrange. The following variant states that for a subgroup of a finite group , not only is an integer, but its value is the index , defined as the number of left cosets of in .

<span class="mw-page-title-main">Conjugacy class</span> In group theory, equivalence class under the relation of conjugation

In mathematics, especially group theory, two elements and of a group are conjugate if there is an element in the group such that This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under for all elements in the group.

<span class="mw-page-title-main">Cyclic group</span> Mathematical group that can be generated as the set of powers of a single element

In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted Cn, that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a generator of the group.

<span class="mw-page-title-main">Coset</span> Disjoint, equal-size subsets of a groups underlying set

In mathematics, specifically group theory, a subgroup H of a group G may be used to decompose the underlying set of G into disjoint, equal-size subsets called cosets. There are left cosets and right cosets. Cosets have the same number of elements (cardinality) as does H. Furthermore, H itself is both a left coset and a right coset. The number of left cosets of H in G is equal to the number of right cosets of H in G. This common value is called the index of H in G and is usually denoted by [G : H].

<span class="mw-page-title-main">Generating set of a group</span> Abstract algebra concept

In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination of finitely many elements of the subset and their inverses.

In group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group G is isomorphic to a subgroup of a symmetric group. More specifically, G is isomorphic to a subgroup of the symmetric group whose elements are the permutations of the underlying set of G. Explicitly,

In mathematics, specifically group theory, the index of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G. The index is denoted or or . Because G is the disjoint union of the left cosets and because each left coset has the same size as H, the index is related to the orders of the two groups by the formula

In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free-modules, the free modules over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In algebraic topology, free abelian groups are used to define chain groups, and in algebraic geometry they are used to define divisors.

<span class="mw-page-title-main">Glossary of group theory</span>

A group is a set together with an associative operation which admits an identity element and such that every element has an inverse.

<span class="mw-page-title-main">Cayley graph</span> Graph defined from a mathematical group

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing families of expander graphs.

<span class="mw-page-title-main">Order (group theory)</span> Cardinality of a mathematical group, or of the subgroup generated by an element

In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is infinite. The order of an element of a group is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element a of a group, is thus the smallest positive integer m such that am = e, where e denotes the identity element of the group, and am denotes the product of m copies of a. If no such m exists, the order of a is infinite.

In group theory, a field of mathematics, a double coset is a collection of group elements which are equivalent under the symmetries coming from two subgroups. More precisely, let G be a group, and let H and K be subgroups. Let H act on G by left multiplication and let K act on G by right multiplication. For each x in G, the (H, K)-double coset of x is the set

<span class="mw-page-title-main">Dihedral group of order 6</span> Non-commutative group with 6 elements

In mathematics, D3 (sometimes alternatively denoted by D6) is the dihedral group of degree 3, or, in other words, the dihedral group of order 6. It is isomorphic to the symmetric group S3 of degree 3. It is also the smallest non-abelian group.

<span class="mw-page-title-main">Direct product of groups</span>

In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.

In mathematics, the concept of a relatively hyperbolic group is an important generalization of the geometric group theory concept of a hyperbolic group. The motivating examples of relatively hyperbolic groups are the fundamental groups of complete noncompact hyperbolic manifolds of finite volume.

References