Normal subgroup

Last updated

In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) [1] is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup of the group is normal in if and only if for all and The usual notation for this relation is

Contents

Normal subgroups are important because they (and only they) can be used to construct quotient groups of the given group. Furthermore, the normal subgroups of are precisely the kernels of group homomorphisms with domain which means that they can be used to internally classify those homomorphisms.

Évariste Galois was the first to realize the importance of the existence of normal subgroups. [2]

Definitions

A subgroup of a group is called a normal subgroup of if it is invariant under conjugation; that is, the conjugation of an element of by an element of is always in [3] The usual notation for this relation is

Equivalent conditions

For any subgroup of the following conditions are equivalent to being a normal subgroup of Therefore, any one of them may be taken as the definition.

Examples

For any group the trivial subgroup consisting of just the identity element of is always a normal subgroup of Likewise, itself is always a normal subgroup of (If these are the only normal subgroups, then is said to be simple.) [6] Other named normal subgroups of an arbitrary group include the center of the group (the set of elements that commute with all other elements) and the commutator subgroup [7] [8] More generally, since conjugation is an isomorphism, any characteristic subgroup is a normal subgroup. [9]

If is an abelian group then every subgroup of is normal, because More generally, for any group , every subgroup of the center of is normal in . (In the special case that is abelian, the center is all of , hence the fact that all subgroups of an abelian group are normal.) A group that is not abelian but for which every subgroup is normal is called a Hamiltonian group. [10]

A concrete example of a normal subgroup is the subgroup of the symmetric group consisting of the identity and both three-cycles. In particular, one can check that every coset of is either equal to itself or is equal to On the other hand, the subgroup is not normal in since [11] This illustrates the general fact that any subgroup of index two is normal.

As an example of a normal subgroup within a matrix group, consider the general linear group of all invertible matrices with real entries under the operation of matrix multiplication and its subgroup of all matrices of determinant 1 (the special linear group). To see why the subgroup is normal in , consider any matrix in and any invertible matrix . Then using the two important identities and , one has that , and so as well. This means is closed under conjugation in , so it is a normal subgroup. [lower-alpha 1]

In the Rubik's Cube group, the subgroups consisting of operations which only affect the orientations of either the corner pieces or the edge pieces are normal. [12]

The translation group is a normal subgroup of the Euclidean group in any dimension. [13] This means: applying a rigid transformation, followed by a translation and then the inverse rigid transformation, has the same effect as a single translation. By contrast, the subgroup of all rotations about the origin is not a normal subgroup of the Euclidean group, as long as the dimension is at least 2: first translating, then rotating about the origin, and then translating back will typically not fix the origin and will therefore not have the same effect as a single rotation about the origin.

Properties

Lattice of normal subgroups

Given two normal subgroups, and of their intersection and their product are also normal subgroups of

The normal subgroups of form a lattice under subset inclusion with least element, and greatest element, The meet of two normal subgroups, and in this lattice is their intersection and the join is their product.

The lattice is complete and modular. [20]

Normal subgroups, quotient groups and homomorphisms

If is a normal subgroup, we can define a multiplication on cosets as follows:

This relation defines a mapping To show that this mapping is well-defined, one needs to prove that the choice of representative elements does not affect the result. To this end, consider some other representative elements Then there are such that It follows that

where we also used the fact that is a normal subgroup, and therefore there is such that This proves that this product is a well-defined mapping between cosets.

With this operation, the set of cosets is itself a group, called the quotient group and denoted with There is a natural homomorphism, given by This homomorphism maps into the identity element of which is the coset [23] that is,

In general, a group homomorphism, sends subgroups of to subgroups of Also, the preimage of any subgroup of is a subgroup of We call the preimage of the trivial group in the kernel of the homomorphism and denote it by As it turns out, the kernel is always normal and the image of is always isomorphic to (the first isomorphism theorem). [24] In fact, this correspondence is a bijection between the set of all quotient groups of and the set of all homomorphic images of (up to isomorphism). [25] It is also easy to see that the kernel of the quotient map, is itself, so the normal subgroups are precisely the kernels of homomorphisms with domain [26]

See also

Operations taking subgroups to subgroups

Subgroup properties complementary (or opposite) to normality

Subgroup properties stronger than normality

Subgroup properties weaker than normality

Notes

  1. In other language: is a homomorphism from to the multiplicative subgroup , and is the kernel. Both arguments also work over the complex numbers, or indeed over an arbitrary field.

Related Research Articles

In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.

<span class="mw-page-title-main">Quotient group</span> Group obtained by aggregating similar elements of a larger group

A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure. For example, the cyclic group of addition modulo n can be obtained from the group of integers under addition by identifying elements that differ by a multiple of and defining a group structure that operates on each such class as a single entity. It is part of the mathematical field known as group theory.

<span class="mw-page-title-main">Group (mathematics)</span> Set with associative invertible operation

In mathematics, a group is a set with an operation that satisfies the following constraints: the operation is associative and has an identity element, and every element of the set has an inverse element.

<span class="mw-page-title-main">Subgroup</span> Subset of a group that forms a group itself

In group theory, a branch of mathematics, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is often denoted HG, read as "H is a subgroup of G".

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

In algebra, the kernel of a homomorphism is generally the inverse image of 0. An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix.

In abstract algebra, a congruence relation is an equivalence relation on an algebraic structure that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes for the relation.

<span class="mw-page-title-main">Coset</span> Disjoint, equal-size subsets of a groups underlying set

In mathematics, specifically group theory, a subgroup H of a group G may be used to decompose the underlying set of G into disjoint, equal-size subsets called cosets. There are left cosets and right cosets. Cosets have the same number of elements (cardinality) as does H. Furthermore, H itself is both a left coset and a right coset. The number of left cosets of H in G is equal to the number of right cosets of H in G. This common value is called the index of H in G and is usually denoted by [G : H].

In group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group G is isomorphic to a subgroup of a symmetric group. More specifically, G is isomorphic to a subgroup of the symmetric group whose elements are the permutations of the underlying set of G. Explicitly,

<span class="mw-page-title-main">Nilpotent group</span> Group that has an upper central series terminating with G

In mathematics, specifically group theory, a nilpotent groupG is a group that has an upper central series that terminates with G. Equivalently, its central series is of finite length or its lower central series terminates with {1}.

<span class="mw-page-title-main">Orthogonal group</span> Type of group in mathematics

In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of orthogonal matrices, where the group operation is given by matrix multiplication. The orthogonal group is an algebraic group and a Lie group. It is compact.

In mathematics, specifically group theory, the index of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G. The index is denoted or or . Because G is the disjoint union of the left cosets and because each left coset has the same size as H, the index is related to the orders of the two groups by the formula

<span class="mw-page-title-main">Glossary of group theory</span>

A group is a set together with an associative operation that admits an identity element and such that there exists an inverse for every element.

In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring.

In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example is the subgroup of invertible 2 × 2 integer matrices of determinant 1 in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.

<span class="mw-page-title-main">Linear algebraic group</span> Subgroup of the group of invertible n×n matrices

In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of .

In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by , , or , is a type of commutative affine algebraic group commonly found in projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups . These groups were named by analogy with the theory of tori in Lie group theory. For example, over the complex numbers the algebraic torus is isomorphic to the group scheme , which is the scheme theoretic analogue of the Lie group . In fact, any -action on a complex vector space can be pulled back to a -action from the inclusion as real manifolds.

In group theory, a field of mathematics, a double coset is a collection of group elements which are equivalent under the symmetries coming from two subgroups. More precisely, let G be a group, and let H and K be subgroups. Let H act on G by left multiplication and let K act on G by right multiplication. For each x in G, the (H, K)-double coset of x is the set

In mathematics, a covering group of a topological group H is a covering space G of H such that G is a topological group and the covering map p : GH is a continuous group homomorphism. The map p is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which H has index 2 in G; examples include the spin groups, pin groups, and metaplectic groups.

<span class="mw-page-title-main">Complexification (Lie group)</span> Universal construction of a complex Lie group from a real Lie group

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

References

Bibliography

Further reading