Additive group

Last updated

An additive group is a group of which the group operation is to be thought of as addition in some sense. It is usually abelian, and typically written using the symbol + for its binary operation.

This terminology is widely used with structures equipped with several operations for specifying the structure obtained by forgetting the other operations. Examples include the additive group [1] of the integers, of a vector space and of a ring. This is particularly useful with rings and fields to distinguish the additive underlying group from the multiplicative group of the invertible elements.

In older terminology, an additive subgroup of a ring has also been known as a modul or module (not to be confused with a module). [2]

Related Research Articles

<span class="mw-page-title-main">Abelian group</span> Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties.

In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In mathematics, specifically in category theory, a preadditive category is another name for an Ab-category, i.e., a category that is enriched over the category of abelian groups, Ab. That is, an Ab-categoryC is a category such that every hom-set Hom(A,B) in C has the structure of an abelian group, and composition of morphisms is bilinear, in the sense that composition of morphisms distributes over the group operation. In formulas:

In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.

In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts.

In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

In mathematics, an algebraic structure consists of a nonempty set A, a collection of operations on A, and a finite set of identities, known as axioms, that these operations must satisfy.

Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.

In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module also generalizes the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers.

In mathematics, in the area of category theory, a forgetful functor 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure. Because many structures in mathematics consist of a set with an additional added structure, a forgetful functor that maps to the underlying set is the most common case.

The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups and is another abelian group consisting of the ordered pairs where and . To add ordered pairs, we define the sum to be ; in other words addition is defined coordinate-wise. For example, the direct sum , where is real coordinate space, is the Cartesian plane, . A similar process can be used to form the direct sum of two vector spaces or two modules.

In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring-theoretic properties. More precisely two rings like R, S are Morita equivalent if their categories of modules are additively equivalent. It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958.

In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context.

In mathematics, a Drinfeld module is roughly a special kind of module over a ring of functions on a curve over a finite field, generalizing the Carlitz module. Loosely speaking, they provide a function field analogue of complex multiplication theory. A shtuka is a sort of generalization of a Drinfeld module, consisting roughly of a vector bundle over a curve, together with some extra structure identifying a "Frobenius twist" of the bundle with a "modification" of it.

In mathematics, many types of algebraic structures are studied. Abstract algebra is primarily the study of specific algebraic structures and their properties. Algebraic structures may be viewed in different ways, however the common starting point of algebra texts is that an algebraic object incorporates one or more sets with one or more binary operations or unary operations satisfying a collection of axioms.

In algebra, an additive map, -linear map or additive function is a function that preserves the addition operation:

In mathematics, and more specifically in abstract algebra, a pseudo-ring is one of the following variants of a ring:

References

  1. Bourbaki, N. (1998) [1970], "§8.1 Rings", Algebra I: Chapters 1–3, Springer, p. 97, ISBN   978-3-540-64243-5
  2. "MathOverflow: The Origin(s) of Modular and Moduli" . Retrieved 8 March 2024.