Hyperbolic group

Last updated

In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a word hyperbolic group or Gromov hyperbolic group, is a finitely generated group equipped with a word metric satisfying certain properties abstracted from classical hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by MikhailGromov  ( 1987 ). The inspiration came from various existing mathematical theories: hyperbolic geometry but also low-dimensional topology (in particular the results of Max Dehn concerning the fundamental group of a hyperbolic Riemann surface, and more complex phenomena in three-dimensional topology), and combinatorial group theory. In a very influential (over 1000 citations [1] ) chapter from 1987, Gromov proposed a wide-ranging research program. Ideas and foundational material in the theory of hyperbolic groups also stem from the work of George Mostow, William Thurston, James W. Cannon, Eliyahu Rips, and many others.

Contents

Definition

Let be a finitely generated group, and be its Cayley graph with respect to some finite set of generators. The set is endowed with its graph metric (in which edges are of length one and the distance between two vertices is the minimal number of edges in a path connecting them) which turns it into a length space. The group is then said to be hyperbolic if is a hyperbolic space in the sense of Gromov. Shortly, this means that there exists a such that any geodesic triangle in is -thin, as illustrated in the figure on the right (the space is then said to be -hyperbolic).

Delta thin triangle condition.svg
Delta thin triangle condition.svg
The δ-thin triangle condition

A priori this definition depends on the choice of a finite generating set . That this is not the case follows from the two following facts:

Thus we can legitimately speak of a finitely generated group being hyperbolic without referring to a generating set. On the other hand, a space which is quasi-isometric to a -hyperbolic space is itself -hyperbolic for some but the latter depends on both the original and on the quasi-isometry, thus it does not make sense to speak of being -hyperbolic.

Remarks

The Švarc–Milnor lemma [2] states that if a group acts properly discontinuously and with compact quotient (such an action is often called geometric) on a proper length space , then it is finitely generated, and any Cayley graph for is quasi-isometric to . Thus a group is (finitely generated and) hyperbolic if and only if it has a geometric action on a proper hyperbolic space.

If is a subgroup with finite index (i.e., the set is finite), then the inclusion induces a quasi-isometry on the vertices of any locally finite Cayley graph of into any locally finite Cayley graph of . Thus is hyperbolic if and only if itself is. More generally, if two groups are commensurable, then one is hyperbolic if and only if the other is.

Examples

Elementary hyperbolic groups

The simplest examples of hyperbolic groups are finite groups (whose Cayley graphs are of finite diameter, hence -hyperbolic with equal to this diameter).

Another simple example is given by the infinite cyclic group : the Cayley graph of with respect to the generating set is a line, so all triangles are line segments and the graph is -hyperbolic. It follows that any group which is virtually cyclic (contains a copy of of finite index) is also hyperbolic, for example the infinite dihedral group.

Members in this class of groups are often called elementary hyperbolic groups (the terminology is adapted from that of actions on the hyperbolic plane).

Free groups and groups acting on trees

Let be a finite set and be the free group with generating set . Then the Cayley graph of with respect to is a locally finite tree and hence a 0-hyperbolic space. Thus is a hyperbolic group.

More generally we see that any group which acts properly discontinuously on a locally finite tree (in this context this means exactly that the stabilizers in of the vertices are finite) is hyperbolic. Indeed, this follows from the fact that has an invariant subtree on which it acts with compact quotient, and the Svarc—Milnor lemma. Such groups are in fact virtually free (i.e. contain a finitely generated free subgroup of finite index), which gives another proof of their hyperbolicity.

An interesting example is the modular group : it acts on the tree given by the 1-skeleton of the associated tessellation of the hyperbolic plane and it has a finite index free subgroup (on two generators) of index 6 (for example the set of matrices in which reduce to the identity modulo 2 is such a group). Note an interesting feature of this example: it acts properly discontinuously on a hyperbolic space (the hyperbolic plane) but the action is not cocompact (and indeed is not quasi-isometric to the hyperbolic plane).

Fuchsian groups

Generalising the example of the modular group a Fuchsian group is a group admitting a properly discontinuous action on the hyperbolic plane (equivalently, a discrete subgroup of ). The hyperbolic plane is a -hyperbolic space and hence the Svarc—Milnor lemma tells us that cocompact Fuchsian groups are hyperbolic.

Examples of such are the fundamental groups of closed surfaces of negative Euler characteristic. Indeed, these surfaces can be obtained as quotients of the hyperbolic plane, as implied by the Poincaré—Koebe Uniformisation theorem.

Another family of examples of cocompact Fuchsian groups is given by triangle groups: all but finitely many are hyperbolic.

Negative curvature

Generalising the example of closed surfaces, the fundamental groups of compact Riemannian manifolds with strictly negative sectional curvature are hyperbolic. For example, cocompact lattices in the orthogonal or unitary group preserving a form of signature are hyperbolic.

A further generalisation is given by groups admitting a geometric action on a CAT(k) space, when is any negative number. [3] There exist examples which are not commensurable to any of the previous constructions (for instance groups acting geometrically on hyperbolic buildings).

Small cancellation groups

Groups having presentations which satisfy small cancellation conditions are hyperbolic. This gives a source of examples which do not have a geometric origin as the ones given above. In fact one of the motivations for the initial development of hyperbolic groups was to give a more geometric interpretation of small cancellation.

Random groups

In some sense, "most" finitely presented groups with large defining relations are hyperbolic. For a quantitative statement of what this means see Random group.

Non-examples

Properties

Algebraic properties

Geometric properties

Homological properties

Algorithmic properties

Generalisations

Relatively hyperbolic groups

Relatively hyperbolic groups are a class generalising hyperbolic groups. Very roughly [12] is hyperbolic relative to a collection of subgroups if it admits a (not necessarily cocompact) properly discontinuous action on a proper hyperbolic space which is "nice" on the boundary of and such that the stabilisers in of points on the boundary are subgroups in . This is interesting when both and the action of on are not elementary (in particular is infinite: for example every group is hyperbolic relatively to itself via its action on a single point!).

Interesting examples in this class include in particular non-uniform lattices in rank 1 semisimple Lie groups, for example fundamental groups of non-compact hyperbolic manifolds of finite volume. Non-examples are lattices in higher-rank Lie groups and mapping class groups.

Acylindrically hyperbolic groups

An even more general notion is that of an acylindically hyperbolic group. [13] Acylindricity of an action of a group on a metric space is a weakening of proper discontinuity of the action. [14]

A group is said to be acylindrically hyperbolic if it admits a non-elementary acylindrical action on a (not necessarily proper) Gromov-hyperbolic space. This notion includes mapping class groups via their actions on curve complexes. Lattices in higher-rank Lie groups are (still!) not acylindrically hyperbolic.

CAT(0) groups

In another direction one can weaken the assumption about curvature in the examples above: a CAT(0) group is a group admitting a geometric action on a CAT(0) space. This includes Euclidean crystallographic groups and uniform lattices in higher-rank Lie groups.

It is not known whether there exists a hyperbolic group which is not CAT(0). [15]

Notes

  1. Gromov, Mikhail (1987). "Hyperbolic Groups". In Gersten, S.M. (ed.). Essays in Group Theory. Mathematical Sciences Research Institute Publications, vol 8. New York, NY: Springer. pp. 75–263.
  2. Bowditch 2006, Theorem 3.6.
  3. for a proof that this includes the previous examples see https://lamington.wordpress.com/2012/10/17/upper-curvature-bounds-and-catk/
  4. Ghys & de la Harpe 1990, Ch. 8, Th. 37.
  5. Bridson & Haefliger 1999, Chapter 3.Γ, Corollary 3.10..
  6. Bowditch 2006, (F4) in paragraph 6.11.2.
  7. Ghys & de la Harpe 1990, Chapitre 4.
  8. Mineyev 2002.
  9. Charney 1992.
  10. Dahmani & Guirardel 2011.
  11. Cannon & Swenson 1998.
  12. Bowditch 2012.
  13. Osin 2016.
  14. In some detail: it asks that for every there exist such that for every two points which are at least apart there are at most elements satisfying and .
  15. "Are all δ-hyperbolic groups CAT(0)?". Stack Exchange . February 10, 2015.

Related Research Articles

<span class="mw-page-title-main">Cayley graph</span> Graph defined from a mathematical group

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing expander graphs.

In mathematics, real trees are a class of metric spaces generalising simplicial trees. They arise naturally in many mathematical contexts, in particular geometric group theory and probability theory. They are also the simplest examples of Gromov hyperbolic spaces.

<span class="mw-page-title-main">Geometric group theory</span> Area in mathematics devoted to the study of finitely generated groups

Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act.

In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations between points. The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of trees. Hyperbolicity is a large-scale property, and is very useful to the study of certain infinite groups called Gromov-hyperbolic groups.

In mathematics, Mostow's rigidity theorem, or strong rigidity theorem, or Mostow–Prasad rigidity theorem, essentially states that the geometry of a complete, finite-volume hyperbolic manifold of dimension greater than two is determined by the fundamental group and hence unique. The theorem was proven for closed manifolds by Mostow (1968) and extended to finite volume manifolds by Marden (1974) in 3 dimensions, and by Prasad (1973) in all dimensions at least 3. Gromov (1981) gave an alternate proof using the Gromov norm. Besson, Courtois & Gallot (1996) gave the simplest available proof.

In mathematics, specifically geometric group theory, a geometric group action is a certain type of action of a discrete group on a metric space.

<span class="mw-page-title-main">Quasi-isometry</span> Function between two metric spaces that only respects their large-scale geometry

In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces.

In mathematics, a group is called boundedly generated if it can be expressed as a finite product of cyclic subgroups. The property of bounded generation is also closely related with the congruence subgroup problem.

<span class="mw-page-title-main">Lattice (discrete subgroup)</span> Discrete subgroup in a locally compact topological group

In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of Rn, this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood.

In mathematics, an ultralimit is a geometric construction that assigns a limit metric space to a sequence of metric spaces . The concept captures the limiting behavior of finite configurations in the spaces employing an ultrafilter to bypass the need for repeatedly consideration of subsequences to ensure convergence. Ultralimits generalize Gromov Hausdorff convergence in metric spaces.

Bass–Serre theory is a part of the mathematical subject of group theory that deals with analyzing the algebraic structure of groups acting by automorphisms on simplicial trees. The theory relates group actions on trees with decomposing groups as iterated applications of the operations of free product with amalgamation and HNN extension, via the notion of the fundamental group of a graph of groups. Bass–Serre theory can be regarded as one-dimensional version of the orbifold theory.

In the mathematical subject of group theory, the Stallings theorem about ends of groups states that a finitely generated group has more than one end if and only if the group admits a nontrivial decomposition as an amalgamated free product or an HNN extension over a finite subgroup. In the modern language of Bass–Serre theory the theorem says that a finitely generated group has more than one end if and only if admits a nontrivial action on a simplicial tree with finite edge-stabilizers and without edge-inversions.

In mathematics, the concept of a relatively hyperbolic group is an important generalization of the geometric group theory concept of a hyperbolic group. The motivating examples of relatively hyperbolic groups are the fundamental groups of complete noncompact hyperbolic manifolds of finite volume.

Arithmetic Fuchsian groups are a special class of Fuchsian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. The prototypical example of an arithmetic Fuchsian group is the modular group . They, and the hyperbolic surface associated to their action on the hyperbolic plane often exhibit particularly regular behaviour among Fuchsian groups and hyperbolic surfaces.

In the mathematical subject of geometric group theory, the Švarc–Milnor lemma is a statement which says that a group , equipped with a "nice" discrete isometric action on a metric space , is quasi-isometric to .

In mathematics, the Poisson boundary is a measure space associated to a random walk. It is an object designed to encode the asymptotic behaviour of the random walk, i.e. how trajectories diverge when the number of steps goes to infinity. Despite being called a boundary it is in general a purely measure-theoretical object and not a boundary in the topological sense. However, in the case where the random walk is on a topological space the Poisson boundary can be related to the Martin boundary, which is an analytic construction yielding a genuine topological boundary. Both boundaries are related to harmonic functions on the space via generalisations of the Poisson formula.

In metric geometry, asymptotic dimension of a metric space is a large-scale analog of Lebesgue covering dimension. The notion of asymptotic dimension was introduced by Mikhail Gromov in his 1993 monograph Asymptotic invariants of infinite groups in the context of geometric group theory, as a quasi-isometry invariant of finitely generated groups. As shown by Guoliang Yu, finitely generated groups of finite homotopy type with finite asymptotic dimension satisfy the Novikov conjecture. Asymptotic dimension has important applications in geometric analysis and index theory.

In the mathematical subject of group theory, a co-Hopfian group is a group that is not isomorphic to any of its proper subgroups. The notion is dual to that of a Hopfian group, named after Heinz Hopf.

In the mathematical subject of geometric group theory, an acylindrically hyperbolic group is a group admitting a non-elementary 'acylindrical' isometric action on some geodesic hyperbolic metric space. This notion generalizes the notions of a hyperbolic group and of a relatively hyperbolic group and includes a significantly wider class of examples, such as mapping class groups and Out(Fn).

In mathematics, a Cannon–Thurston map is any of a number of continuous group-equivariant maps between the boundaries of two hyperbolic metric spaces extending a discrete isometric actions of the group on those spaces.

References

Further reading