Word metric

Last updated

In group theory, a word metric on a discrete group is a way to measure distance between any two elements of . As the name suggests, the word metric is a metric on , assigning to any two elements , of a distance that measures how efficiently their difference can be expressed as a word whose letters come from a generating set for the group. The word metric on G is very closely related to the Cayley graph of G: the word metric measures the length of the shortest path in the Cayley graph between two elements of G.

Contents

A generating set for must first be chosen before a word metric on is specified. Different choices of a generating set will typically yield different word metrics. While this seems at first to be a weakness in the concept of the word metric, it can be exploited to prove theorems about geometric properties of groups, as is done in geometric group theory.

Examples

The group of integers ℤ

The group of integers ℤ is generated by the set {-1,+1}. The integer -3 can be expressed as -1-1-1+1-1, a word of length 5 in these generators. But the word that expresses -3 most efficiently is -1-1-1, a word of length 3. The distance between 0 and -3 in the word metric is therefore equal to 3. More generally, the distance between two integers m and n in the word metric is equal to |m-n|, because the shortest word representing the difference m-n has length equal to |m-n|.

The group

For a more illustrative example, the elements of the group can be thought of as vectors in the Cartesian plane with integer coefficients. The group is generated by the standard unit vectors , and their inverses , . The Cayley graph of is the so-called taxicab geometry. It can be pictured in the plane as an infinite square grid of city streets, where each horizontal and vertical line with integer coordinates is a street, and each point of lies at the intersection of a horizontal and a vertical street. Each horizontal segment between two vertices represents the generating vector or , depending on whether the segment is travelled in the forward or backward direction, and each vertical segment represents or . A car starting from and travelling along the streets to can make the trip by many different routes. But no matter what route is taken, the car must travel at least |1 - (-2)| = 3 horizontal blocks and at least |2 - 4| = 2 vertical blocks, for a total trip distance of at least 3 + 2 = 5. If the car goes out of its way the trip may be longer, but the minimal distance travelled by the car, equal in value to the word metric between and is therefore equal to 5.

In general, given two elements and of , the distance between and in the word metric is equal to .

Definition

Let G be a group, let S be a generating set for G, and suppose that S is closed under the inverse operation on G. A word over the set S is just a finite sequence whose entries are elements of S. The integer L is called the length of the word . Using the group operation in G, the entries of a word can be multiplied in order, remembering that the entries are elements of G. The result of this multiplication is an element in the group G, which is called the evaluation of the word w. As a special case, the empty word has length zero, and its evaluation is the identity element of G.

Given an element g of G, its word norm |g| with respect to the generating set S is defined to be the shortest length of a word over S whose evaluation is equal to g. Given two elements g,h in G, the distance d(g,h) in the word metric with respect to S is defined to be . Equivalently, d(g,h) is the shortest length of a word w over S such that .

The word metric on G satisfies the axioms for a metric, and it is not hard to prove this. The proof of the symmetry axiom d(g,h) = d(h,g) for a metric uses the assumption that the generating set S is closed under inverse.

Variations

The word metric has an equivalent definition formulated in more geometric terms using the Cayley graph of G with respect to the generating set S. When each edge of the Cayley graph is assigned a metric of length 1, the distance between two group elements g,h in G is equal to the shortest length of a path in the Cayley graph from the vertex g to the vertex h.

The word metric on G can also be defined without assuming that the generating set S is closed under inverse. To do this, first symmetrize S, replacing it by a larger generating set consisting of each in S as well as its inverse . Then define the word metric with respect to S to be the word metric with respect to the symmetrization of S.

Example in a free group

In the free group on the two element set {a,b}, the distance between a and b in the word metric equals 2 Cayley graph of F2.svg
In the free group on the two element set {a,b}, the distance between a and b in the word metric equals 2

Suppose that F is the free group on the two element set . A word w in the symmetric generating set is said to be reduced if the letters do not occur next to each other in w, nor do the letters . Every element is represented by a unique reduced word, and this reduced word is the shortest word representing g. For example, since the word is reduced and has length 2, the word norm of equals 2, so the distance in the word norm between and equals 2. This can be visualized in terms of the Cayley graph, where the shortest path between b and a has length 2.

Theorems

Isometry of the left action

The group G acts on itself by left multiplication: the action of each takes each to . This action is an isometry of the word metric. The proof is simple: the distance between and equals , which equals the distance between and .

Bilipschitz invariants of a group

In general, the word metric on a group G is not unique, because different symmetric generating sets give different word metrics. However, finitely generated word metrics are unique up to bilipschitz equivalence: if , are two symmetric, finite generating sets for G with corresponding word metrics , , then there is a constant such that for any ,

.

This constant K is just the maximum of the word norms of elements of and the word norms of elements of . This proof is also easy: any word over S can be converted by substitution into a word over T, expanding the length of the word by a factor of at most K, and similarly for converting words over T into words over S.

The bilipschitz equivalence of word metrics implies in turn that the growth rate of a finitely generated group is a well-defined isomorphism invariant of the group, independent of the choice of a finite generating set. This implies in turn that various properties of growth, such as polynomial growth, the degree of polynomial growth, and exponential growth, are isomorphism invariants of groups. This topic is discussed further in the article on the growth rate of a group.

Quasi-isometry invariants of a group

In geometric group theory, groups are studied by their actions on metric spaces. A principle that generalizes the bilipschitz invariance of word metrics says that any finitely generated word metric on G is quasi-isometric to any proper, geodesic metric space on which G acts, properly discontinuously and cocompactly. Metric spaces on which G acts in this manner are called model spaces for G.

It follows in turn that any quasi-isometrically invariant property satisfied by the word metric of G or by any model space of G is an isomorphism invariant of G. Modern geometric group theory is in large part the study of quasi-isometry invariants.

See also

Related Research Articles

<span class="mw-page-title-main">Inner product space</span> Generalization of the dot product; used to define Hilbert spaces

In mathematics, an inner product space is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.

A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.

In mathematics, a presentation is one method of specifying a group. A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators. We then say G has presentation

<span class="mw-page-title-main">Generating set of a group</span> Abstract algebra concept

In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination of finitely many elements of the subset and their inverses.

In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

<span class="mw-page-title-main">Quaternion group</span> Non-abelian group of order eight

In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation

The Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space H. It is named after V. A. Fock who first introduced it in his 1932 paper "Konfigurationsraum und zweite Quantelung".

<span class="mw-page-title-main">Isometry</span> Distance-preserving mathematical transformation

In mathematics, an isometry is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning "measure".

In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature Kp) depends on a two-dimensional linear subspace σp of the tangent space at a point p of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.

<span class="mw-page-title-main">Cayley graph</span> Graph defined from a mathematical group

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing expander graphs.

<span class="mw-page-title-main">Poincaré half-plane model</span> Upper-half plane model of hyperbolic non-Euclidean geometry

In non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H, together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry.

In mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint operator on that space according to the rule

<span class="mw-page-title-main">Hyperbolic group</span> Mathematical concept

In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a word hyperbolic group or Gromov hyperbolic group, is a finitely generated group equipped with a word metric satisfying certain properties abstracted from classical hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by Mikhail Gromov (1987). The inspiration came from various existing mathematical theories: hyperbolic geometry but also low-dimensional topology, and combinatorial group theory. In a very influential chapter from 1987, Gromov proposed a wide-ranging research program. Ideas and foundational material in the theory of hyperbolic groups also stem from the work of George Mostow, William Thurston, James W. Cannon, Eliyahu Rips, and many others.

<span class="mw-page-title-main">Quasi-isometry</span>

In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces.

<span class="mw-page-title-main">SIC-POVM</span>

In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2)having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

In the mathematical subject of group theory, a one-relator group is a group given by a group presentation with a single defining relation. One-relator groups play an important role in geometric group theory by providing many explicit examples of finitely presented groups.

In the mathematical subject of group theory, the Howson property, also known as the finitely generated intersection property (FGIP), is the property of a group saying that the intersection of any two finitely generated subgroups of this group is again finitely generated. The property is named after Albert G. Howson who in a 1954 paper established that free groups have this property.

In the mathematical subject of geometric group theory, an acylindrically hyperbolic group is a group admitting a non-elementary 'acylindrical' isometric action on some geodesic hyperbolic metric space. This notion generalizes the notions of a hyperbolic group and of a relatively hyperbolic group and includes a significantly wider class of examples, such as mapping class groups and Out(Fn).

In mathematics, hyperbolic complex space is a Hermitian manifold which is the equivalent of the real hyperbolic space in the context of complex manifolds. The complex hyperbolic space is a Kähler manifold, and it is characterised by being the only simply connected Kähler manifold whose holomorphic sectional curvature is constant equal to -1. Its underlying Riemannian manifold has non-constant negative curvature, pinched between -1 and -1/4 : in particular, it is a CAT(-1/4) space.

References