# Cartesian coordinate system

Last updated

A Cartesian coordinate system (, ) is a coordinate system that specifies each point uniquely in a plane by a set of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length. Each reference line is called a coordinate axis or just axis (plural axes) of the system, and the point where they meet is its origin , at ordered pair (0, 0). The coordinates can also be defined as the positions of the perpendicular projections of the point onto the two axes, expressed as signed distances from the origin.

British English is the standard dialect of English language as spoken and written in the United Kingdom. Variations exist in formal, written English in the United Kingdom. For example, the adjective wee is almost exclusively used in parts of Scotland and Ireland, and occasionally Yorkshire, whereas little is predominant elsewhere. Nevertheless, there is a meaningful degree of uniformity in written English within the United Kingdom, and this could be described by the term British English. The forms of spoken English, however, vary considerably more than in most other areas of the world where English is spoken, so a uniform concept of British English is more difficult to apply to the spoken language. According to Tom McArthur in the Oxford Guide to World English, British English shares "all the ambiguities and tensions in the word 'British' and as a result can be used and interpreted in two ways, more broadly or more narrowly, within a range of blurring and ambiguity".

American English, sometimes called United States English or U.S. English, is the set of varieties of the English language native to the United States. American English is considered one of the most influential dialects of English globally, including on other varieties of English.

In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is significant, and they are sometimes identified by their position in an ordered tuple and sometimes by a letter, as in "the x-coordinate". The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and vice versa; this is the basis of analytic geometry.

## Contents

One can use the same principle to specify the position of any point in three-dimensional space by three Cartesian coordinates, its signed distances to three mutually perpendicular planes (or, equivalently, by its perpendicular projection onto three mutually perpendicular lines). In general, n Cartesian coordinates (an element of real n-space) specify the point in an n-dimensional Euclidean space for any dimension n. These coordinates are equal, up to sign, to distances from the point to n mutually perpendicular hyperplanes.

Three-dimensional space is a geometric setting in which three values are required to determine the position of an element. This is the informal meaning of the term dimension.

Euclidean space is the fundamental space of geometry. Originally, this was the three-dimensional space of Euclidean geometry, but, in modern mathematics, there are Euclidean spaces of any nonnegative integer dimension, including the three-dimensional space and the Euclidean plane. It has been introduced by the Ancient Greek mathematician Euclid of Alexandria, and the qualifier Euclidean has been added for distinguishing it from other spaces that are considered in physics and modern mathematics.

In physics and mathematics, the dimension of a mathematical space is informally defined as the minimum number of coordinates needed to specify any point within it. Thus a line has a dimension of one because only one coordinate is needed to specify a point on it – for example, the point at 5 on a number line. A surface such as a plane or the surface of a cylinder or sphere has a dimension of two because two coordinates are needed to specify a point on it – for example, both a latitude and longitude are required to locate a point on the surface of a sphere. The inside of a cube, a cylinder or a sphere is three-dimensional because three coordinates are needed to locate a point within these spaces.

The invention of Cartesian coordinates in the 17th century by René Descartes (Latinized name: Cartesius) revolutionized mathematics by providing the first systematic link between Euclidean geometry and algebra. Using the Cartesian coordinate system, geometric shapes (such as curves) can be described by Cartesian equations: algebraic equations involving the coordinates of the points lying on the shape. For example, a circle of radius 2, centered at the origin of the plane, may be described as the set of all points whose coordinates x and y satisfy the equation x2 + y2 = 4.

René Descartes was a French philosopher, mathematician, and scientist. A native of the Kingdom of France, he spent about 20 years (1629–1649) of his life in the Dutch Republic after serving for a while in the Dutch States Army of Maurice of Nassau, Prince of Orange and the Stadtholder of the United Provinces. One of the most notable intellectual figures of the Dutch Golden Age, Descartes is also widely regarded as one of the founders of modern philosophy.

Euclidean geometry is a mathematical system attributed to Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in secondary school as the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language.

Algebra is one of the broad parts of mathematics, together with number theory, geometry and analysis. In its most general form, algebra is the study of mathematical symbols and the rules for manipulating these symbols; it is a unifying thread of almost all of mathematics. It includes everything from elementary equation solving to the study of abstractions such as groups, rings, and fields. The more basic parts of algebra are called elementary algebra; the more abstract parts are called abstract algebra or modern algebra. Elementary algebra is generally considered to be essential for any study of mathematics, science, or engineering, as well as such applications as medicine and economics. Abstract algebra is a major area in advanced mathematics, studied primarily by professional mathematicians.

Cartesian coordinates are the foundation of analytic geometry, and provide enlightening geometric interpretations for many other branches of mathematics, such as linear algebra, complex analysis, differential geometry, multivariate calculus, group theory and more. A familiar example is the concept of the graph of a function. Cartesian coordinates are also essential tools for most applied disciplines that deal with geometry, including astronomy, physics, engineering and many more. They are the most common coordinate system used in computer graphics, computer-aided geometric design and other geometry-related data processing.

In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

Linear algebra is the branch of mathematics concerning linear equations such as

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is useful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

## History

The adjective Cartesian refers to the French mathematician and philosopher René Descartes, who published this idea in 1637. It was independently discovered by Pierre de Fermat, who also worked in three dimensions, although Fermat did not publish the discovery. [1] The French cleric Nicole Oresme used constructions similar to Cartesian coordinates well before the time of Descartes and Fermat. [2]

A mathematician is someone who uses an extensive knowledge of mathematics in his or her work, typically to solve mathematical problems.

A philosopher is someone who practices philosophy. The term "philosopher" comes from the Ancient Greek, φιλόσοφος (philosophos), meaning "lover of wisdom". The coining of the term has been attributed to the Greek thinker Pythagoras.

Pierre de Fermat was a French lawyer at the Parlement of Toulouse, France, and a mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his discovery of an original method of finding the greatest and the smallest ordinates of curved lines, which is analogous to that of differential calculus, then unknown, and his research into number theory. He made notable contributions to analytic geometry, probability, and optics. He is best known for his Fermat's principle for light propagation and his Fermat's Last Theorem in number theory, which he described in a note at the margin of a copy of Diophantus' Arithmetica.

Both Descartes and Fermat used a single axis in their treatments and have a variable length measured in reference to this axis. The concept of using a pair of axes was introduced later, after Descartes' La Géométrie was translated into Latin in 1649 by Frans van Schooten and his students. These commentators introduced several concepts while trying to clarify the ideas contained in Descartes' work. [3]

La Géométrie was published in 1637 as an appendix to Discours de la méthode, written by René Descartes. In the Discourse, he presents his method for obtaining clarity on any subject. La Géométrie and two other appendices, also by Descartes, La Dioptrique (Optics) and Les Météores (Meteorology), were published with the Discourse to give examples of the kinds of successes he had achieved following his method.

Franciscus van Schooten was a Dutch mathematician who is most known for popularizing the analytic geometry of René Descartes.

The development of the Cartesian coordinate system would play a fundamental role in the development of the calculus by Isaac Newton and Gottfried Wilhelm Leibniz. [4] The two-coordinate description of the plane was later generalized into the concept of vector spaces. [5]

Many other coordinate systems have been developed since Descartes, such as the polar coordinates for the plane, and the spherical and cylindrical coordinates for three-dimensional space.

## Description

### One dimension

Choosing a Cartesian coordinate system for a one-dimensional space—that is, for a straight line—involves choosing a point O of the line (the origin), a unit of length, and an orientation for the line. An orientation chooses which of the two half-lines determined by O is the positive, and which is negative; we then say that the line "is oriented" (or "points") from the negative half towards the positive half. Then each point P of the line can be specified by its distance from O, taken with a + or − sign depending on which half-line contains P.

A line with a chosen Cartesian system is called a number line. Every real number has a unique location on the line. Conversely, every point on the line can be interpreted as a number in an ordered continuum such as the real numbers.

### Two dimensions

A Cartesian coordinate system in two dimensions (also called a rectangular coordinate system or an orthogonal coordinate system [6] ) is defined by an ordered pair of perpendicular lines (axes), a single unit of length for both axes, and an orientation for each axis. The point where the axes meet is taken as the origin for both, thus turning each axis into a number line. For any point P, a line is drawn through P perpendicular to each axis, and the position where it meets the axis is interpreted as a number. The two numbers, in that chosen order, are the Cartesian coordinates of P. The reverse construction allows one to determine the point P given its coordinates.

The first and second coordinates are called the abscissa and the ordinate of P, respectively; and the point where the axes meet is called the origin of the coordinate system. The coordinates are usually written as two numbers in parentheses, in that order, separated by a comma, as in (3, −10.5). Thus the origin has coordinates (0, 0), and the points on the positive half-axes, one unit away from the origin, have coordinates (1, 0) and (0, 1).

In mathematics, physics, and engineering, the first axis is usually defined or depicted as horizontal and oriented to the right, and the second axis is vertical and oriented upwards. (However, in some computer graphics contexts, the ordinate axis may be oriented downwards.) The origin is often labeled O, and the two coordinates are often denoted by the letters X and Y, or x and y. The axes may then be referred to as the X-axis and Y-axis. The choices of letters come from the original convention, which is to use the latter part of the alphabet to indicate unknown values. The first part of the alphabet was used to designate known values.

A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane. In a Cartesian plane one can define canonical representatives of certain geometric figures, such as the unit circle (with radius equal to the length unit, and center at the origin), the unit square (whose diagonal has endpoints at (0, 0) and (1, 1)), the unit hyperbola, and so on.

The two axes divide the plane into four right angles, called quadrants. The quadrants may be named or numbered in various ways, but the quadrant where all coordinates are positive is usually called the first quadrant.

If the coordinates of a point are (x, y), then its distances from the X-axis and from the Y-axis are |y| and |x|, respectively; where |...| denotes the absolute value of a number.

### Three dimensions

A Cartesian coordinate system for a three-dimensional space consists of an ordered triplet of lines (the axes) that go through a common point (the origin), and are pair-wise perpendicular; an orientation for each axis; and a single unit of length for all three axes. As in the two-dimensional case, each axis becomes a number line. For any point P of space, one considers a plane through P perpendicular to each coordinate axis, and interprets the point where that plane cuts the axis as a number. The Cartesian coordinates of P are those three numbers, in the chosen order. The reverse construction determines the point P given its three coordinates.

Alternatively, each coordinate of a point P can be taken as the distance from P to the plane defined by the other two axes, with the sign determined by the orientation of the corresponding axis.

Each pair of axes defines a coordinate plane. These planes divide space into eight trihedra, called octants.

The coordinates are usually written as three numbers (or algebraic formulas) surrounded by parentheses and separated by commas, as in (3, −2.5, 1) or (t, u + v, π/2). Thus, the origin has coordinates (0, 0, 0), and the unit points on the three axes are (1, 0, 0), (0, 1, 0), and (0, 0, 1).

There are no standard names for the coordinates in the three axes (however, the terms abscissa, ordinate and applicate are sometimes used). The coordinates are often denoted by the letters X, Y, and Z, or x, y, and z. The axes may then be referred to as the X-axis, Y-axis, and Z-axis, respectively. Then the coordinate planes can be referred to as the XY-plane, YZ-plane, and XZ-plane.

In mathematics, physics, and engineering contexts, the first two axes are often defined or depicted as horizontal, with the third axis pointing up. In that case the third coordinate may be called height or altitude. The orientation is usually chosen so that the 90 degree angle from the first axis to the second axis looks counter-clockwise when seen from the point (0, 0, 1); a convention that is commonly called the right hand rule .

### Higher dimensions

Since Cartesian coordinates are unique and non-ambiguous, the points of a Cartesian plane can be identified with pairs of real numbers; that is with the Cartesian product ${\displaystyle \mathbb {R} ^{2}=\mathbb {R} \times \mathbb {R} }$, where ${\displaystyle \mathbb {R} }$ is the set of all real numbers. In the same way, the points in any Euclidean space of dimension n be identified with the tuples (lists) of n real numbers, that is, with the Cartesian product ${\displaystyle \mathbb {R} ^{n}}$.

### Generalizations

The concept of Cartesian coordinates generalizes to allow axes that are not perpendicular to each other, and/or different units along each axis. In that case, each coordinate is obtained by projecting the point onto one axis along a direction that is parallel to the other axis (or, in general, to the hyperplane defined by all the other axes). In such an oblique coordinate system the computations of distances and angles must be modified from that in standard Cartesian systems, and many standard formulas (such as the Pythagorean formula for the distance) do not hold (see affine plane).

## Notations and conventions

The Cartesian coordinates of a point are usually written in parentheses and separated by commas, as in (10, 5) or (3, 5, 7). The origin is often labelled with the capital letter O. In analytic geometry, unknown or generic coordinates are often denoted by the letters (x, y) in the plane, and (x, y, z) in three-dimensional space. This custom comes from a convention of algebra, which uses letters near the end of the alphabet for unknown values (such as were the coordinates of points in many geometric problems), and letters near the beginning for given quantities.

These conventional names are often used in other domains, such as physics and engineering, although other letters may be used. For example, in a graph showing how a pressure varies with time, the graph coordinates may be denoted p and t. Each axis is usually named after the coordinate which is measured along it; so one says the x-axis, the y-axis, the t-axis, etc.

Another common convention for coordinate naming is to use subscripts, as (x1, x2, ..., xn) for the n coordinates in an n-dimensional space, especially when n is greater than 3 or unspecified. Some authors prefer the numbering (x0, x1, ..., xn−1). These notations are especially advantageous in computer programming: by storing the coordinates of a point as an array, instead of a record, the subscript can serve to index the coordinates.

In mathematical illustrations of two-dimensional Cartesian systems, the first coordinate (traditionally called the abscissa) is measured along a horizontal axis, oriented from left to right. The second coordinate (the ordinate) is then measured along a vertical axis, usually oriented from bottom to top. Young children learning the Cartesian system, commonly learn the order to read the values before cementing the x-, y-, and z-axis concepts, by starting with 2D mnemonics (e.g. 'Walk along the hall then up the stairs' akin to straight across the x-axis then up vertically along the y-axis). [7]

Computer graphics and image processing, however, often use a coordinate system with the y-axis oriented downwards on the computer display. This convention developed in the 1960s (or earlier) from the way that images were originally stored in display buffers.

For three-dimensional systems, a convention is to portray the xy-plane horizontally, with the z-axis added to represent height (positive up). Furthermore, there is a convention to orient the x-axis toward the viewer, biased either to the right or left. If a diagram (3D projection or 2D perspective drawing) shows the x- and y-axis horizontally and vertically, respectively, then the z-axis should be shown pointing "out of the page" towards the viewer or camera. In such a 2D diagram of a 3D coordinate system, the z-axis would appear as a line or ray pointing down and to the left or down and to the right, depending on the presumed viewer or camera perspective. In any diagram or display, the orientation of the three axes, as a whole, is arbitrary. However, the orientation of the axes relative to each other should always comply with the right-hand rule, unless specifically stated otherwise. All laws of physics and math assume this right-handedness, which ensures consistency.

For 3D diagrams, the names "abscissa" and "ordinate" are rarely used for x and y, respectively. When they are, the z-coordinate is sometimes called the applicate. The words abscissa, ordinate and applicate are sometimes used to refer to coordinate axes rather than the coordinate values. [6]

The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants, [6] each bounded by two half-axes. These are often numbered from 1st to 4th and denoted by Roman numerals: I (where the signs of the two coordinates are I (+,+), II (−,+), III (−,−), and IV (+,−). When the axes are drawn according to the mathematical custom, the numbering goes counter-clockwise starting from the upper right ("north-east") quadrant.

Similarly, a three-dimensional Cartesian system defines a division of space into eight regions or octants, [6] according to the signs of the coordinates of the points. The convention used for naming a specific octant is to list its signs, e.g. (+ + +) or (− + −). The generalization of the quadrant and octant to an arbitrary number of dimensions is the orthant , and a similar naming system applies.

## Cartesian formulae for the plane

### Distance between two points

The Euclidean distance between two points of the plane with Cartesian coordinates ${\displaystyle (x_{1},y_{1})}$ and ${\displaystyle (x_{2},y_{2})}$ is

${\displaystyle d={\sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}.}$

This is the Cartesian version of Pythagoras's theorem. In three-dimensional space, the distance between points ${\displaystyle (x_{1},y_{1},z_{1})}$ and ${\displaystyle (x_{2},y_{2},z_{2})}$ is

${\displaystyle d={\sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2}}},}$

which can be obtained by two consecutive applications of Pythagoras' theorem. [8]

### Euclidean transformations

The Euclidean transformations or Euclidean motions are the (bijective) mappings of points of the Euclidean plane to themselves which preserve distances between points. There are four types of these mappings (also called isometries): translations, rotations, reflections and glide reflections. [9]

#### Translation

Translating a set of points of the plane, preserving the distances and directions between them, is equivalent to adding a fixed pair of numbers (a, b) to the Cartesian coordinates of every point in the set. That is, if the original coordinates of a point are (x, y), after the translation they will be

${\displaystyle (x',y')=(x+a,y+b).}$

#### Rotation

To rotate a figure counterclockwise around the origin by some angle ${\displaystyle \theta }$ is equivalent to replacing every point with coordinates (x,y) by the point with coordinates (x',y'), where

${\displaystyle x'=x\cos \theta -y\sin \theta }$
${\displaystyle y'=x\sin \theta +y\cos \theta .}$

Thus:

${\displaystyle (x',y')=((x\cos \theta -y\sin \theta \,),(x\sin \theta +y\cos \theta \,)).}$

#### Reflection

If (x, y) are the Cartesian coordinates of a point, then (−x, y) are the coordinates of its reflection across the second coordinate axis (the y-axis), as if that line were a mirror. Likewise, (x, −y) are the coordinates of its reflection across the first coordinate axis (the x-axis). In more generality, reflection across a line through the origin making an angle ${\displaystyle \theta }$ with the x-axis, is equivalent to replacing every point with coordinates (x, y) by the point with coordinates (x′,y′), where

${\displaystyle x'=x\cos 2\theta +y\sin 2\theta }$
${\displaystyle y'=x\sin 2\theta -y\cos 2\theta .}$

Thus: ${\displaystyle (x',y')=((x\cos 2\theta +y\sin 2\theta \,),(x\sin 2\theta -y\cos 2\theta \,)).}$

#### Glide reflection

A glide reflection is the composition of a reflection across a line followed by a translation in the direction of that line. It can be seen that the order of these operations does not matter (the translation can come first, followed by the reflection).

#### General matrix form of the transformations

These Euclidean transformations of the plane can all be described in a uniform way by using matrices. The result ${\displaystyle (x',y')}$ of applying a Euclidean transformation to a point ${\displaystyle (x,y)}$ is given by the formula

${\displaystyle (x',y')=(x,y)A+b}$

where A is a 2×2 orthogonal matrix and b = (b1, b2) is an arbitrary ordered pair of numbers; [10] that is,

${\displaystyle x'=xA_{11}+yA_{21}+b_{1}}$
${\displaystyle y'=xA_{12}+yA_{22}+b_{2},}$

where

${\displaystyle A={\begin{pmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{pmatrix}}.}$[The row vectors are used for point coordinates, and the matrix is written on the right.]

To be orthogonal, the matrix A must have orthogonal rows with same Euclidean length of one, that is,

${\displaystyle A_{11}A_{21}+A_{12}A_{22}=0}$

and

${\displaystyle A_{11}^{2}+A_{12}^{2}=A_{21}^{2}+A_{22}^{2}=1.}$

This is equivalent to saying that A times its transpose must be the identity matrix. If these conditions do not hold, the formula describes a more general affine transformation of the plane provided that the determinant of A is not zero.

The formula defines a translation if and only if A is the identity matrix. The transformation is a rotation around some point if and only if A is a rotation matrix, meaning that

${\displaystyle A_{11}A_{22}-A_{21}A_{12}=1.}$

A reflection or glide reflection is obtained when,

${\displaystyle A_{11}A_{22}-A_{21}A_{12}=-1.}$

Assuming that translation is not used transformations can be combined by simply multiplying the associated transformation matrices.

#### Affine transformation

Another way to represent coordinate transformations in Cartesian coordinates is through affine transformations. In affine transformations an extra dimension is added and all points are given a value of 1 for this extra dimension. The advantage of doing this is that point translations can be specified in the final column of matrix A. In this way, all of the euclidean transformations become transactable as matrix point multiplications. The affine transformation is given by:

${\displaystyle {\begin{pmatrix}A_{11}&A_{21}&b_{1}\\A_{12}&A_{22}&b_{2}\\0&0&1\end{pmatrix}}{\begin{pmatrix}x\\y\\1\end{pmatrix}}={\begin{pmatrix}x'\\y'\\1\end{pmatrix}}.}$[Note the matrix A from above was transposed. The matrix is on the left and column vectors for point coordinates are used.]

Using affine transformations multiple different euclidean transformations including translation can be combined by simply multiplying the corresponding matrices.

#### Scaling

An example of an affine transformation which is not a Euclidean motion is given by scaling. To make a figure larger or smaller is equivalent to multiplying the Cartesian coordinates of every point by the same positive number m. If (x, y) are the coordinates of a point on the original figure, the corresponding point on the scaled figure has coordinates

${\displaystyle (x',y')=(mx,my).}$

If m is greater than 1, the figure becomes larger; if m is between 0 and 1, it becomes smaller.

#### Shearing

A shearing transformation will push the top of a square sideways to form a parallelogram. Horizontal shearing is defined by:

${\displaystyle (x',y')=(x+ys,y)}$

Shearing can also be applied vertically:

${\displaystyle (x',y')=(x,xs+y)}$

## Orientation and handedness

### In two dimensions

Fixing or choosing the x-axis determines the y-axis up to direction. Namely, the y-axis is necessarily the perpendicular to the x-axis through the point marked 0 on the x-axis. But there is a choice of which of the two half lines on the perpendicular to designate as positive and which as negative. Each of these two choices determines a different orientation (also called handedness) of the Cartesian plane.

The usual way of orienting the plane, with the positive x-axis pointing right and the positive y-axis pointing up (and the x-axis being the "first" and the y-axis the "second" axis), is considered the positive or standard orientation, also called the right-handed orientation.

A commonly used mnemonic for defining the positive orientation is the right-hand rule . Placing a somewhat closed right hand on the plane with the thumb pointing up, the fingers point from the x-axis to the y-axis, in a positively oriented coordinate system.

The other way of orienting the plane is following the left hand rule, placing the left hand on the plane with the thumb pointing up.

When pointing the thumb away from the origin along an axis towards positive, the curvature of the fingers indicates a positive rotation along that axis.

Regardless of the rule used to orient the plane, rotating the coordinate system will preserve the orientation. Switching any two axes will reverse the orientation, but switching both will leave the orientation unchanged.

### In three dimensions

Once the x- and y-axes are specified, they determine the line along which the z-axis should lie, but there are two possible orientation for this line. The two possible coordinate systems which result are called 'right-handed' and 'left-handed'. The standard orientation, where the xy-plane is horizontal and the z-axis points up (and the x- and the y-axis form a positively oriented two-dimensional coordinate system in the xy-plane if observed from above the xy-plane) is called right-handed or positive.

The name derives from the right-hand rule. If the index finger of the right hand is pointed forward, the middle finger bent inward at a right angle to it, and the thumb placed at a right angle to both, the three fingers indicate the relative orientation of the x-, y-, and z-axes in a right-handed system. The thumb indicates the x-axis, the index finger the y-axis and the middle finger the z-axis. Conversely, if the same is done with the left hand, a left-handed system results.

Figure 7 depicts a left and a right-handed coordinate system. Because a three-dimensional object is represented on the two-dimensional screen, distortion and ambiguity result. The axis pointing downward (and to the right) is also meant to point towards the observer, whereas the "middle"-axis is meant to point away from the observer. The red circle is parallel to the horizontal xy-plane and indicates rotation from the x-axis to the y-axis (in both cases). Hence the red arrow passes in front of the z-axis.

Figure 8 is another attempt at depicting a right-handed coordinate system. Again, there is an ambiguity caused by projecting the three-dimensional coordinate system into the plane. Many observers see Figure 8 as "flipping in and out" between a convex cube and a concave "corner". This corresponds to the two possible orientations of the space. Seeing the figure as convex gives a left-handed coordinate system. Thus the "correct" way to view Figure 8 is to imagine the x-axis as pointing towards the observer and thus seeing a concave corner.

## Representing a vector in the standard basis

A point in space in a Cartesian coordinate system may also be represented by a position vector, which can be thought of as an arrow pointing from the origin of the coordinate system to the point. [11] If the coordinates represent spatial positions (displacements), it is common to represent the vector from the origin to the point of interest as ${\displaystyle \mathbf {r} }$. In two dimensions, the vector from the origin to the point with Cartesian coordinates (x, y) can be written as:

${\displaystyle \mathbf {r} =x\mathbf {i} +y\mathbf {j} }$

where ${\displaystyle \mathbf {i} ={\begin{pmatrix}1\\0\end{pmatrix}}}$, and ${\displaystyle \mathbf {j} ={\begin{pmatrix}0\\1\end{pmatrix}}}$ are unit vectors in the direction of the x-axis and y-axis respectively, generally referred to as the standard basis (in some application areas these may also be referred to as versors). Similarly, in three dimensions, the vector from the origin to the point with Cartesian coordinates ${\displaystyle (x,y,z)}$ can be written as: [12]

${\displaystyle \mathbf {r} =x\mathbf {i} +y\mathbf {j} +z\mathbf {k} }$

where ${\displaystyle \mathbf {k} ={\begin{pmatrix}0\\0\\1\end{pmatrix}}}$ is the unit vector in the direction of the z-axis.

There is no natural interpretation of multiplying vectors to obtain another vector that works in all dimensions, however there is a way to use complex numbers to provide such a multiplication. In a two dimensional cartesian plane, identify the point with coordinates (x, y) with the complex number z = x + iy. Here, i is the imaginary unit and is identified with the point with coordinates (0, 1), so it is not the unit vector in the direction of the x-axis. Since the complex numbers can be multiplied giving another complex number, this identification provides a means to "multiply" vectors. In a three dimensional cartesian space a similar identification can be made with a subset of the quaternions.

## Applications

Cartesian coordinates are an abstraction that have a multitude of possible applications in the real world. However, three constructive steps are involved in superimposing coordinates on a problem application. 1) Units of distance must be decided defining the spatial size represented by the numbers used as coordinates. 2) An origin must be assigned to a specific spatial location or landmark, and 3) the orientation of the axes must be defined using available directional cues for all but one axis.

Consider as an example superimposing 3D Cartesian coordinates over all points on the Earth (i.e. geospatial 3D). What units make sense? Kilometers are a good choice, since the original definition of the kilometer was geospatial...10 000 km equalling the surface distance from the Equator to the North Pole. Where to place the origin? Based on symmetry, the gravitational center of the Earth suggests a natural landmark (which can be sensed via satellite orbits). Finally, how to orient X-, Y- and Z-axis? The axis of Earth's spin provides a natural orientation strongly associated with "up vs. down", so positive Z can adopt the direction from geocenter to North Pole. A location on the Equator is needed to define the X-axis, and the prime meridian stands out as a reference orientation, so the X-axis takes the orientation from geocenter out to [ 0 degrees longitude, 0 degrees latitude ]. Note that with 3 dimensions, and two perpendicular axes orientations pinned down for X and Z, the Y-axis is determined by the first two choices. In order to obey the right-hand rule, the Y-axis must point out from the geocenter to [ 90 degrees longitude, 0 degrees latitude ]. So what are the geocentric coordinates of the Empire State Building in New York City? Using [ longitude = −73.985656, latitude = 40.748433 ], Earth radius = 40,000/2π, and transforming from spherical --> Cartesian coordinates, you can estimate the geocentric coordinates of the Empire State Building, [ x, y, z ] = [ 1330.53 km, –4635.75 km, 4155.46 km ]. GPS navigation relies on such geocentric coordinates.

In engineering projects, agreement on the definition of coordinates is a crucial foundation. One cannot assume that coordinates come predefined for a novel application, so knowledge of how to erect a coordinate system where there is none is essential to applying René Descartes' thinking.

While spatial apps employ identical units along all axes, in business and scientific apps, each axis may have different units of measurement associated with it (such as kilograms, seconds, pounds, etc.). Although four- and higher-dimensional spaces are difficult to visualize, the algebra of Cartesian coordinates can be extended relatively easily to four or more variables, so that certain calculations involving many variables can be done. (This sort of algebraic extension is what is used to define the geometry of higher-dimensional spaces.) Conversely, it is often helpful to use the geometry of Cartesian coordinates in two or three dimensions to visualize algebraic relationships between two or three of many non-spatial variables.

The graph of a function or relation is the set of all points satisfying that function or relation. For a function of one variable, f, the set of all points (x, y), where y = f(x) is the graph of the function f. For a function g of two variables, the set of all points (x, y, z), where z = g(x, y) is the graph of the function g. A sketch of the graph of such a function or relation would consist of all the salient parts of the function or relation which would include its relative extrema, its concavity and points of inflection, any points of discontinuity and its end behavior. All of these terms are more fully defined in calculus. Such graphs are useful in calculus to understand the nature and behavior of a function or relation.

## Related Research Articles

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction.

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the radial distance of that point from a fixed origin, its polar angle measured from a fixed zenith direction, and the azimuth angle of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the zenith, measured from a fixed reference direction on that plane. It can be seen as the three-dimensional version of the polar coordinate system.

In electrodynamics, elliptical polarization is the polarization of electromagnetic radiation such that the tip of the electric field vector describes an ellipse in any fixed plane intersecting, and normal to, the direction of propagation. An elliptically polarized wave may be resolved into two linearly polarized waves in phase quadrature, with their polarization planes at right angles to each other. Since the electric field can rotate clockwise or counterclockwise as it propagates, elliptically polarized waves exhibit chirality.

Angular displacement of a body is the angle in radians through which a point revolves around a centre or line has been rotated in a specified sense about a specified axis. When a body rotates about its axis, the motion cannot simply be analyzed as a particle, as in circular motion it undergoes a changing velocity and acceleration at any time (t). When dealing with the rotation of a body, it becomes simpler to consider the body itself rigid. A body is generally considered rigid when the separations between all the particles remains constant throughout the body's motion, so for example parts of its mass are not flying off. In a realistic sense, all things can be deformable, however this impact is minimal and negligible. Thus the rotation of a rigid body over a fixed axis is referred to as rotational motion.

In geometry, a hyperboloid of revolution, sometimes called circular hyperboloid, is a surface that may be generated by rotating a hyperbola around one of its principal axes. A hyperboloid is a surface that may be obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat": . The term direction vector is used to describe a unit vector being used to represent spatial direction, and such quantities are commonly denoted as d. Two 2D direction vectors, d1 and d2 are illustrated. 2D spatial directions represented this way are numerically equivalent to points on the unit circle.

3D projection is any method of mapping three-dimensional points to a two-dimensional plane. As most current methods for displaying graphical data are based on planar two-dimensional media, the use of this type of projection is widespread, especially in computer graphics, engineering and drafting.

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space. A clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude.

The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system. They can also represent the orientation of a mobile frame of reference in physics or the orientation of a general basis in 3-dimensional linear algebra.

In non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H , together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry.

In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

In geometry, a Euclidean plane isometry is an isometry of the Euclidean plane, or more informally, a way of transforming the plane that preserves geometrical properties such as length. There are four types: translations, rotations, reflections, and glide reflections.

In mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO(4). The name comes from the fact that it is the special orthogonal group of order 4.

In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x'y'-Cartesian coordinate system in which the origin is kept fixed and the x' and y' axes are obtained by rotating the x and y axes counterclockwise through an angle . A point P has coordinates with respect to the original system and coordinates with respect to the new system. In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly. A rotation of axes is a linear map and a rigid transformation.

In geometric topology, the Clifford torus is the simplest and most symmetric Euclidean space embedding of the cartesian product of two circles S1a and S1b. It is named after William Kingdon Clifford. It resides in R4, as opposed to in R3. To see why R4 is necessary, note that if S1a and S1b each exist in their own independent embedding spaces R2a and R2b, the resulting product space will be R4 rather than R3. The historically popular view that the cartesian product of two circles is an R3 torus in contrast requires the highly asymmetric application of a rotation operator to the second circle, since that circle will only have one independent axis z available to it after the first circle consumes x and y.

Two-dimensional space is a geometric setting in which two values are required to determine the position of an element. The set 2 of pairs of real numbers with appropriate structure often serves as the canonical example of a two-dimensional Euclidian space. For a generalization of the concept, see dimension.

In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space. In three dimensions it is an alternative to the axis of rotation, but unlike the axis of rotation it can be used in other dimensions, such as two, four or more dimensions.

In the hyperbolic plane, as in the Euclidean plane, each point can be uniquely identified by two real numbers. Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used.

## References

1. Bix, Robert A.; D'Souza, Harry J. "Analytic geometry". Encyclopædia Britannica. Retrieved 6 August 2017.
2. Kent, Alexander J.; Vujakovic, Peter (4 October 2017). The Routledge Handbook of Mapping and Cartography. Routledge. ISBN   9781317568216.
3. Burton 2011 , p. 374
4. A Tour of the Calculus, David Berlinski
5. Axler, Sheldon (2015). Linear Algebra Done Right - Springer. Undergraduate Texts in Mathematics. p. 1. doi:10.1007/978-3-319-11080-6. ISBN   978-3-319-11079-0.
6. "Cartesian orthogonal coordinate system". Encyclopedia of Mathematics. Retrieved 6 August 2017.
7. "Charts and Graphs: Choosing the Right Format". www.mindtools.com. Retrieved 29 August 2017.
8. Hughes-Hallett, Deborah; McCallum, William G.; Gleason, Andrew M. (2013). Calculus : Single and Multivariable (6 ed.). John wiley. ISBN   978-0470-88861-2.
9. Smart 1998 , Chap. 2
10. Brannan, Esplen & Gray 1998 , pg. 49
11. Brannan, Esplen & Gray 1998 , Appendix 2, pp. 377–382
12. David J. Griffiths (1999). . Prentice Hall. ISBN   978-0-13-805326-0.

## Sources

• Brannan, David A.; Esplen, Matthew F.; Gray, Jeremy J. (1998), Geometry, Cambridge: Cambridge University Press, ISBN   978-0-521-59787-6
• Burton, David M. (2011), The History of Mathematics/An Introduction (7th ed.), New York: McGraw-Hill, ISBN   978-0-07-338315-6
• Smart, James R. (1998), Modern Geometries (5th ed.), Pacific Grove: Brooks/Cole, ISBN   978-0-534-35188-5